22.
Елецкий А.В.
Углеродные нанотрубки и их эмиссионные свойства // УФН. 2002.
Т. 172. № 4. С. 369–402.
23.
Prabhu S.
,
Shubrajit Bhaumik
,
Vinayagam B.K.
Finite element modeling and analysis
of zigzag and armchair type single wall carbon nanotube // Journal of Mechanical
Engineering Research. 2012. Vol. 4 (8). P. 260–266.
24.
Bowman J.C.
,
Krumhansl J.A.
The Low-Temperature Specific Heat of Graphite //
J. Phys. Chem. Solids. 1958. Vol. 6. No. 4. P. 367–379.
REFERENCES
[1] Overney G., Zhong W., Tomanek D.Z. Structural rigidity and low frequency
vibrational modes of long carbon tubules.
Zeitschrift f¨ur Physik D. Atoms, Molecules
and Clusters
, 1993, vol. 27, no. 1, pp. 93–96. DOI: 10.1007/BF01436769
[2] Yakobson B.I., Brabec C.J., Bernholc J. Nanomechanics of carbon tubes: Instabilities
beyond linear response.
Phys. Rev. Lett
., 1996, vol. 76, no. 14, p. 2511.
[3] Treacy M.M.J., Ebbesen T.W., Gibson J.M. Exceptionally high Young’s modulus
observed for individual carbon nanotubes.
Nature
, 1996, no. 381, pp. 678–680.
[4] Krishnan A., Dujardin E., Ebbesen T.W., Yianilos P.N., Treacy M.M.J. Young’s
modulus of single-walled nanotubes.
Phys. Rev. B
, 1998, no. 58, pp. 14013–14019.
[5] Lourie O., Wagner H.D. Evaluation of Young’s modulus of carbon nanotubes by
micro-Raman spectroscopy.
Journal of Materials Research
, 1998, no. 13, pp. 2418–
2422.
[6] Pan Z.W., Xie S.S., Lu L., Chang B.H., Sun L.F., Zhou W.Y., Wang G., Zhang D.L.
Tensile tests of ropes of very long aligned multiwall carbon nanotubes.
Applied
Physics Letters
, 1999, no. 74, pp. 3152–3154.
[7] Tarasova E.S. The Study of Mechanical Properties of Composites Reinforced with
Carbon Nanotubes.
Molodezhnyy nauch.-tekh. vestnik: elektron. zhurn.
, 2014, no. 7.
Available at:
http://sntbul.bmstu.ru/doc/728018.html[8] Mikitaev A.K., Kozlov G.V. The Efficiency of Polymer Nanocomposites
Reinforcement by Disperse Nanoparticles.
Materials Physics and Mechanics
, 2014,
no. 21, pp. 51–57 (in Russ.). Available at:
http://www.ipme.ru/e-journals/MPM/no_12114/MPM121_06_kozlov.pdf[9] Mikitaev A.K., Kozlov G.V. Perkolyatsionnaya model’ usileniya nanokompozitov
polimer/uglerodnye nanotrubki.
Materials Physics and Mechanics
, 2015, no. 22,
pp. 101–106 (in Russ.). Available at:
http://www.ipme.ru/e-journals/MPM/no_22215/MPM222_01_mikitaev.pdf[10] Eletskiy A.V., Iskandarova I.M., Knizhnik A.A., Krasikov D.N. Graphene:
fabrication methods and thermophysical properties.
Physics–Uspekhi
, 2011, vol. 54,
no. 3, pp. 227–258. DOI: 10.3367/UFNe.0181.201103a.0233
[11] Sorokin P.B.,
Chernozatonskiy L.A.
Graphene-based semiconductor
nanostructures.
Physics–Uspekhi
, 2013, vol. 56, no. 2, pp. 105–122.
DOI: 10.3367/UFNe.0183.201302a.0113
[12] Antonova I.V. Chemical vapor deposition growth of graphene on copper
substrates: current trends.
Physics–Uspekhi
, 2013, vol. 56, no. 10, pp. 1013–1020.
DOI: 10.3367/UFNe.0183.201310i.1115
[13] Samaei A.T., Aliha M.R.M., Mirsayar M.M. Frequency analysis of agraphene sheet
embedded in an ekastic medium with consideration of small scale.
Materials Physics
and Mechanics
, 2015, no. 22, pp. 125–135.
[14] Galashev A.E., Rakhmanova O.R. Mechanical and thermal stability of graphene
and graphene-based materials.
Physics–Uspekhi
, 2014, vol. 57, no. 10, pp. 970–989.
DOI: 10.3367/UFNe.0184.201410c.1045
[15] Galashev A.E., Dubovik
S.Yu.Molecular dynamics simulation of compression of
single-layer graphene.
Physics of the Solid State
, 2013, vol. 55, iss. 9, pp. 1976–1983.
Available at:
http://link.springer.com/article/10.1134/S1063783413090102ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2016. № 1
109