Previous Page  10 / 11 Next Page
Information
Show Menu
Previous Page 10 / 11 Next Page
Page Background

22.

Елецкий А.В.

Углеродные нанотрубки и их эмиссионные свойства // УФН. 2002.

Т. 172. № 4. С. 369–402.

23.

Prabhu S.

,

Shubrajit Bhaumik

,

Vinayagam B.K.

Finite element modeling and analysis

of zigzag and armchair type single wall carbon nanotube // Journal of Mechanical

Engineering Research. 2012. Vol. 4 (8). P. 260–266.

24.

Bowman J.C.

,

Krumhansl J.A.

The Low-Temperature Specific Heat of Graphite //

J. Phys. Chem. Solids. 1958. Vol. 6. No. 4. P. 367–379.

REFERENCES

[1] Overney G., Zhong W., Tomanek D.Z. Structural rigidity and low frequency

vibrational modes of long carbon tubules.

Zeitschrift f¨ur Physik D. Atoms, Molecules

and Clusters

, 1993, vol. 27, no. 1, pp. 93–96. DOI: 10.1007/BF01436769

[2] Yakobson B.I., Brabec C.J., Bernholc J. Nanomechanics of carbon tubes: Instabilities

beyond linear response.

Phys. Rev. Lett

., 1996, vol. 76, no. 14, p. 2511.

[3] Treacy M.M.J., Ebbesen T.W., Gibson J.M. Exceptionally high Young’s modulus

observed for individual carbon nanotubes.

Nature

, 1996, no. 381, pp. 678–680.

[4] Krishnan A., Dujardin E., Ebbesen T.W., Yianilos P.N., Treacy M.M.J. Young’s

modulus of single-walled nanotubes.

Phys. Rev. B

, 1998, no. 58, pp. 14013–14019.

[5] Lourie O., Wagner H.D. Evaluation of Young’s modulus of carbon nanotubes by

micro-Raman spectroscopy.

Journal of Materials Research

, 1998, no. 13, pp. 2418–

2422.

[6] Pan Z.W., Xie S.S., Lu L., Chang B.H., Sun L.F., Zhou W.Y., Wang G., Zhang D.L.

Tensile tests of ropes of very long aligned multiwall carbon nanotubes.

Applied

Physics Letters

, 1999, no. 74, pp. 3152–3154.

[7] Tarasova E.S. The Study of Mechanical Properties of Composites Reinforced with

Carbon Nanotubes.

Molodezhnyy nauch.-tekh. vestnik: elektron. zhurn.

, 2014, no. 7.

Available at:

http://sntbul.bmstu.ru/doc/728018.html

[8] Mikitaev A.K., Kozlov G.V. The Efficiency of Polymer Nanocomposites

Reinforcement by Disperse Nanoparticles.

Materials Physics and Mechanics

, 2014,

no. 21, pp. 51–57 (in Russ.). Available at:

http://www.ipme.ru/e-journals/MPM/no_12114/MPM121_06_kozlov.pdf

[9] Mikitaev A.K., Kozlov G.V. Perkolyatsionnaya model’ usileniya nanokompozitov

polimer/uglerodnye nanotrubki.

Materials Physics and Mechanics

, 2015, no. 22,

pp. 101–106 (in Russ.). Available at:

http://www.ipme.ru/e-journals/MPM/no_22215/MPM222_01_mikitaev.pdf

[10] Eletskiy A.V., Iskandarova I.M., Knizhnik A.A., Krasikov D.N. Graphene:

fabrication methods and thermophysical properties.

Physics–Uspekhi

, 2011, vol. 54,

no. 3, pp. 227–258. DOI: 10.3367/UFNe.0181.201103a.0233

[11] Sorokin P.B.,

Chernozatonskiy L.A.

Graphene-based semiconductor

nanostructures.

Physics–Uspekhi

, 2013, vol. 56, no. 2, pp. 105–122.

DOI: 10.3367/UFNe.0183.201302a.0113

[12] Antonova I.V. Chemical vapor deposition growth of graphene on copper

substrates: current trends.

Physics–Uspekhi

, 2013, vol. 56, no. 10, pp. 1013–1020.

DOI: 10.3367/UFNe.0183.201310i.1115

[13] Samaei A.T., Aliha M.R.M., Mirsayar M.M. Frequency analysis of agraphene sheet

embedded in an ekastic medium with consideration of small scale.

Materials Physics

and Mechanics

, 2015, no. 22, pp. 125–135.

[14] Galashev A.E., Rakhmanova O.R. Mechanical and thermal stability of graphene

and graphene-based materials.

Physics–Uspekhi

, 2014, vol. 57, no. 10, pp. 970–989.

DOI: 10.3367/UFNe.0184.201410c.1045

[15] Galashev A.E., Dubovik

S.Yu.

Molecular dynamics simulation of compression of

single-layer graphene.

Physics of the Solid State

, 2013, vol. 55, iss. 9, pp. 1976–1983.

Available at:

http://link.springer.com/article/10.1134/S1063783413090102

ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. “Естественные науки”. 2016. № 1

109