Background Image
Previous Page  15 / 15
Information
Show Menu
Previous Page 15 / 15
Page Background

[4] Zhevnin A.A., Krishchenko A.P. Upravlyaemost’ nelineinykh system i sintez

algoritmov upravlenia [Controllability of nonlinear systems and synthesis of control

algorithms].

Dokl. Akad. Nauk SSSR

[Proc. Acad. Sci. USSR], 1981, vol. 258, no. 3,

pp. 805–809 (in Russ.).

[5] Sachkova E.F. Priblizhennoye reshenie dvukhtochechnykh granichnykh zadach dlya

system s lineinymi upravleniami [Approximative solution of two-point boundary

value problems for systems with linear control].

Avtom. Telemekh.

[Automation and

Remote Control], 2009, no. 4, pp. 179–189 (in Russ.).

[6] Emel’yanov S.V., Krishchenko A.P., Fetisov D.A. Issledovanie upravliaemosti

affinnykh sistem [The study of controllability of affine systems].

Dokl. RAN

[Proc.

Russ. Acad. Sci.], 2013, vol. 449, no. 1, pp. 15–18 (in Russ.).

[7] Krishchenko A.P., Fetisov D.A. Preobrazovanie affinnykh system i reshenie zadach

terminal’nogo upravlenia [Transformation of affine systems and solving problems of

termination control].

Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki

[Herald of Bauman Moscow State Tech. Univ., Nat. Sci.], 2013, no. 2, pp. 3–16 (in

Russ.).

[8] Krishchenko A.P., Fetisov D.A. Terminal’naya zadacha dlya nogomernykh affinnykh

system [Terminal problem for multidimensional affine systems].

Dokl. RAN

[Proc.

Russ. Acad. Sci.], 2013, vol. 452, no. 2, pp. 144–149 (in Russ.).

[9] Fetisov D.A. Ob odnom metode reshenia terminal’nykh zadach dlya affinnykh

system [On a method for solving terminal control problems for affine systems].

E

lektr. Nauchno-Tehn. Izd. “Nauka i obrazovanie”, MGTU im. N.E. Baumana

[El.

Sc.-Tech. Publ. “Science and Education” of BMSTU], 2013, no. 11. Available at:

http://

technomag.bmstu.ru/doc/622543.html

(accessed 20.11.2013) (in Russ.). DOI:

10.7463/1113.0622543

[10] Krut’ko P.D. Obratnye zadachi dinamiki upravlyaemykh sistem. Nelineynye modeli

[Inverse problems for dynamics controlled systems. Nonlinear models]. Moscow,

Nauka Publ., 1988. 328 p.

[11] Krishchenko A.P., Klinkovskiy M.G. Preobrazovanie affinnykh system s upravleniem

i zadacha stabilizatsii [Transformation of affine systems with control and the problem

of stabilization].

Differ. Uravn.

[Differ. Equations], 1992, vol. 28, no. 11, pp. 1945–

1952 (in Russ.).

[12] Hartman Ph. Ordinary Differential Equations, 1st ed. N.Y., J. Wiley, 1964. (Russ.

Ed.: Khartman F. Obyknovennye differentsial’nye uravneniya. Moscow, Mir Publ.,

1970. 720 p.).

[13] Filippov A.F. Vvedenie v teoriyu differentsial’nykh uravneniy [Introduction to the

differential equations theory]. Moscow, Editorial URSS Publ., 2004. 240 p.

The original manuscript was received by the editors on 18.04.2014

Contributor

D.A. Fetisov — Ph.D. (Phys.-Math.), Associate Professor, Department of Mathematical

Simulation, Bauman Moscow State Technical University, author of 15 research

publications in the field of mathematical control theory.

Bauman Moscow State Technical University, 2-ya Baumanskaya ul. 5, Moscow, 105005

Russian Federation.

The translation of this article from Russian into English is done by O.G. Rumyantseva,

Senior Lecturer, Linguistics Department, Bauman Moscow State Technical University

under the general editorship of N.N. Nikolaeva, Ph.D. (Philol.), Associate Professor,

Linguistics Department, Bauman Moscow State Technical University.

30

ISSN 1812-3368. Herald of the BMSTU. Series “Natural Sciences”. 2014. No. 5