[4] Zhevnin A.A., Krishchenko A.P. Upravlyaemost’ nelineinykh system i sintez
algoritmov upravlenia [Controllability of nonlinear systems and synthesis of control
algorithms].
Dokl. Akad. Nauk SSSR
[Proc. Acad. Sci. USSR], 1981, vol. 258, no. 3,
pp. 805–809 (in Russ.).
[5] Sachkova E.F. Priblizhennoye reshenie dvukhtochechnykh granichnykh zadach dlya
system s lineinymi upravleniami [Approximative solution of two-point boundary
value problems for systems with linear control].
Avtom. Telemekh.
[Automation and
Remote Control], 2009, no. 4, pp. 179–189 (in Russ.).
[6] Emel’yanov S.V., Krishchenko A.P., Fetisov D.A. Issledovanie upravliaemosti
affinnykh sistem [The study of controllability of affine systems].
Dokl. RAN
[Proc.
Russ. Acad. Sci.], 2013, vol. 449, no. 1, pp. 15–18 (in Russ.).
[7] Krishchenko A.P., Fetisov D.A. Preobrazovanie affinnykh system i reshenie zadach
terminal’nogo upravlenia [Transformation of affine systems and solving problems of
termination control].
Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki
[Herald of Bauman Moscow State Tech. Univ., Nat. Sci.], 2013, no. 2, pp. 3–16 (in
Russ.).
[8] Krishchenko A.P., Fetisov D.A. Terminal’naya zadacha dlya nogomernykh affinnykh
system [Terminal problem for multidimensional affine systems].
Dokl. RAN
[Proc.
Russ. Acad. Sci.], 2013, vol. 452, no. 2, pp. 144–149 (in Russ.).
[9] Fetisov D.A. Ob odnom metode reshenia terminal’nykh zadach dlya affinnykh
system [On a method for solving terminal control problems for affine systems].
E
lektr. Nauchno-Tehn. Izd. “Nauka i obrazovanie”, MGTU im. N.E. Baumana
[El.
Sc.-Tech. Publ. “Science and Education” of BMSTU], 2013, no. 11. Available at:
http://
technomag.bmstu.ru/doc/622543.html(accessed 20.11.2013) (in Russ.). DOI:
10.7463/1113.0622543
[10] Krut’ko P.D. Obratnye zadachi dinamiki upravlyaemykh sistem. Nelineynye modeli
[Inverse problems for dynamics controlled systems. Nonlinear models]. Moscow,
Nauka Publ., 1988. 328 p.
[11] Krishchenko A.P., Klinkovskiy M.G. Preobrazovanie affinnykh system s upravleniem
i zadacha stabilizatsii [Transformation of affine systems with control and the problem
of stabilization].
Differ. Uravn.
[Differ. Equations], 1992, vol. 28, no. 11, pp. 1945–
1952 (in Russ.).
[12] Hartman Ph. Ordinary Differential Equations, 1st ed. N.Y., J. Wiley, 1964. (Russ.
Ed.: Khartman F. Obyknovennye differentsial’nye uravneniya. Moscow, Mir Publ.,
1970. 720 p.).
[13] Filippov A.F. Vvedenie v teoriyu differentsial’nykh uravneniy [Introduction to the
differential equations theory]. Moscow, Editorial URSS Publ., 2004. 240 p.
The original manuscript was received by the editors on 18.04.2014
Contributor
D.A. Fetisov — Ph.D. (Phys.-Math.), Associate Professor, Department of Mathematical
Simulation, Bauman Moscow State Technical University, author of 15 research
publications in the field of mathematical control theory.
Bauman Moscow State Technical University, 2-ya Baumanskaya ul. 5, Moscow, 105005
Russian Federation.
The translation of this article from Russian into English is done by O.G. Rumyantseva,
Senior Lecturer, Linguistics Department, Bauman Moscow State Technical University
under the general editorship of N.N. Nikolaeva, Ph.D. (Philol.), Associate Professor,
Linguistics Department, Bauman Moscow State Technical University.
30
ISSN 1812-3368. Herald of the BMSTU. Series “Natural Sciences”. 2014. No. 5