Background Image
Previous Page  12 / 15 Next Page
Information
Show Menu
Previous Page 12 / 15 Next Page
Page Background

specify the

t

-parameter curve in the range of system (2) conditions,

connecting states (3) and (4). The control implementing this trajectory as

system (2) trajectory, can be found using formula (7), if we assume that

B

1

(

t

) =

b

1

(

t

) +

c

(

J

)

1

d

1

(

t

)

, . . . , B

ρ

(

t

) =

b

ρ

(

t

) +

c

(

J

)

ρ

d

ρ

(

t

)

,

B

ρ

+1

=

b

ρ

+1

(

t

)

, . . . , B

m

(

t

) =

b

m

(

t

);

η

(

t

) =

η

(

t, c

(

J

)

)

.

Example

. Let us consider the system

˙

z

i

1

=

z

i

2

;

˙

z

i

2

=

u

i

,

i

= 1

,

2;

˙

η

1

=

0

.

1

η

2

+

z

1

1

+

z

2

2

+ 0

.

08 cos

z

1

2

;

˙

η

2

= 0

.

1

η

1

+

z

2

1

+

z

1

2

0

.

08 sin

z

2

2

(28)

with the following boundary conditions:

z

1

1

(0) = 0

, z

1

2

(0) = 0

, z

2

1

(0) = 0

, z

2

2

(0) = 0

, η

1

(0) = 0

, η

2

(0) = 0

,

z

1

1

(2) =

4

, z

1

2

(2) =

8

, z

2

1

(2) = 0

, z

2

2

(2) = 4

, η

1

(2) =

5

, η

2

(2) = 4

.

For this task

t

= 2

,

m

= 2

,

ρ

= 2

,

r

1

=

r

2

= 2

,

z

1

= (

z

1

1

, z

2

1

)

T

,

z

2

= (

z

1

2

, z

2

2

)

T

,

A

1

=

1 0

0 1

, A

2

=

0 1

1 0

, K

=

0

0

,

1

0

,

1 0

,

p

(

z

1

, z

2

) =

0

.

08 cos

z

1

2

0

.

08 sin

z

2

2

, M

=

A

1

+

KA

2

=

0

.

9 0

0 1

.

1

,

M

1

=

10

/

9 0

0 10

/

11

, P

=

M

1

KM

=

0

11

/

90

9

/

110 0

,

∂p

∂z

1

=

0 0

0 0

,

∂p

∂z

2

=

0

.

08 sin

z

1

2

0

0

0

.

08 cos

z

2

2

.

Since

k

∂p/∂z

1

k

= 0

, а

k

∂p/∂z

2

k

6

0

.

08

2

, we can assume

ε

= 0

.

08

2

as the number

ε

from condition 3 of theorem 3. Matrix

(

P

+

P

T

)

/

2

has

the form of

1

2

(

P

+

P

T

) =

0

2

/

99

2

/

99 0

,

Its largest proper value

λ

= 2

/

99

.

Let us check the fulfilment of theorem 3 conditions. The function

d

(

t

)

,

built with formula (9), has the form of

d

(

t

) =

15

16

t

2

(2

t

)

2

, therefore,

d

0

(

t

) =

15

4

t

(

t

1)(

t

2);

L

= max

[0

,

2]

{

d

(

t

) +

|

d

0

(

t

)

|}

6

1

.

95

.

ISSN 1812-3368. Herald of the BMSTU. Series “Natural Sciences”. 2014. No. 5

27