Kinetic Description of Nonequilibrium Transfer Processes

Authors: Morozov A.N. Published: 03.11.2021
Published in issue: #5(98)/2021  
DOI: 10.18698/1812-3368-2021-5-60-72

Category: Physics | Chapter: Theoretical Physics  
Keywords: thermodynamic equilibrium, nonequilibrium state, local equilibrium hypothesis, entropy production, Brownian motion

The paper uses the example of the Brownian motion to kinetically describe the process of entropy increment in a nonequilibrium medium. The study shows that depending on the degree of nonequilibrium, the convergence to an equilibrium state occurs according to different laws. In the case of a strongly nonequilibrium medium, the entropy increment is described mathematically by the weakest logarithmic law, and in the case of a close-to-equilibrium medium, the entropy seeks a maximum value according to the strongest mathematical law --- the exponential law. The obtained expressions describing the Brownian motion can be extended to all other nonequilibrium processes. Mathematical modeling made it possible to calculate the process of entropy increment for an arbitrary degree of nonequilibrium and establish the parameters at which the transition from logarithmic to exponential law of entropy increment occurs when the thermodynamic system seeks an equilibrium state


[1] Morozov A.N., Skripkin A.V. Nemarkovskie fizicheskie protsessy [Non-Markovian physical processes]. Moscow, FIZMATLIT Publ., 2018.

[2] Glansdorff P., Prigogine I. Thermodynamic theory of structure, stability, and fluctuations. Wiley, 1971.

[3] Jou D., Casas-Vazquez J., Lebon G. Extended irreversible thermodynamics. Berlin, Heidelberg, Springer, 2001. DOI: https://doi.org/10.1007/978-3-642-56565-6

[4] Morozov A.N. Description of transfer processes in a locally nonequilibrium medium. Entropy, 2019, vol. 21, iss. 1, art. 9. DOI: https://doi.org/10.3390/e21010009

[5] Бункин Н.Ф., Морозов А.Н. Стохастические системы в физике и технике. М., Изд-во МГТУ им. Н.Э. Баумана, 2011.

[6] Sobolev S.L. Local non-equilibrium transport models. Phys.-Usp., 1997, vol. 40, no. 10, pp. 1043--1053. DOI: https://doi.org/10.1070/PU1997v040n10ABEH000292

[7] Mainardi F., Mura A., Tampieri F. Brownian motion and anomalous diffusion revisited via a fractional Langevin equation. Modern Problems of Statistical Physics, 2009, vol. 8, pp. 3--23.

[8] Lenzi E.K., Evangelista L.R., Lenzi M.K., et al. Solutions for a non-Markovian diffusion equation. Phys. Lett. A, 2010, vol. 374, iss. 41, pp. 4193--4198. DOI: https://doi.org/10.1016/j.physleta.2010.08.049

[9] Mura A., Taqqu M.S., Mainardi F. Non-Markovian diffusion equations and processes: analysis and simulations. Physica A, 2008, vol. 387, iss. 21, pp. 5033--5064. DOI: https://doi.org/10.1016/j.physa.2008.04.035

[10] Li J.-G., Zu J., Shao B. Factorization law for entanglement evolution of two qubits in non-Markovian pure dephasing channels. Phys. Lett. A, 2011, vol. 375, iss. 24, pp. 2300--2304. DOI: https://doi.org/10.1016/j.physleta.2011.04.053

[11] Iwamatsu A., Ogawa Y., Mitsumori Y., et al. Non-Markovian dephasing of excitons in GaAs quantum wells. J. Lumin., 2006, vol. 119-120, pp. 487--491. DOI: https://doi.org/10.1016/j.jlumin.2006.01.040

[12] Xia H. Non-Markovian velocity diffusion in plasma turbulence. Dissertation Abstracts International, 1994, vol. 54, p. 2029.

[13] Morozov A.N. Brownian motion as an irreversible non-Markovian process. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2019, no. 2 (83), pp. 94--103 (in Russ.). DOI: http://doi.org/10.18698/1812-3368-2019-2-94-103

[14] Kuzovlev Yu.E. Why nature needs 1/f noise? Phys.-Usp., 2015, vol. 58, no. 7, pp. 719--729. DOI: https://doi.org/10.3367/UFNe.0185.201507d.0773

[15] Morozov A.N. Flicker noise in a locally nonequilibrium medium. JETP Lett., 2018, vol. 107, no. 12, pp. 798--799. DOI: https://doi.org/10.1134/S002136401812010X

[16] Coscia V., Fermo L., Bellomo N. On the mathematical theory of living systems II: the interplay between mathematics and system biology. Comput. Math. Appl., 2011, vol. 62, iss. 10, pp. 3902--3911. DOI: https://doi.org/10.1016/j.camwa.2011.09.043

[17] Aristov V.V., Ilyin O. Kinetic models for historical processes of fast invasion and aggression. Phys. Rev. E, 2015, vol. 91, iss. 4, art. 04286. DOI: https://doi.org/10.1103/PhysRevE.91.042806

[18] Aristov V.V. Biological systems as nonequilibrium structures described by kinetic methods. Results Phys., 2019, vol. 13, art. 102232. DOI: https://doi.org/10.1016/j.rinp.2019.102232

[19] Bazarov I.P. Termodinamika [Thermodynamics]. Moscow, Vysshaya shkola Publ., 1991.

[20] Morozov A.N. Nonequilibrium fluctuations of a brownian particle in a medium with production of entropy. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2020, no. 1 (94), pp. 47--56 (in Russ.). DOI: http://doi.org/10.18698/1812-3368-2021-1-47-56

[21] Volterra V. Theory of functionals and of integral and integro-differential equations. Dover, 2005.

[22] Janke E., Emde F., Losch F. Tafeln hoherer funktionen. Verlagsgesellschaft, 1960.

[23] Glagolev K.V., Morozov A.N., Pozdyshev M.L. Calculation of entropy increment during the heat exchange between two solid bodies. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2014, no. 1 (in Russ.). DOI: 10.7463/0114.0681975