|

Gas-Dynamic Stabilization and Intensification of the Methane Oxidation Macrokinetic Processes in the High-Enthalpy Oxygen-Containing Flow

Authors: Arefyev K.Yu., Grishin I.M., Zakharov V.S., Nikoporenko A.V. Published: 24.08.2023
Published in issue: #4(109)/2023  
DOI: 10.18698/1812-3368-2023-4-52-78

 
Category: Physics | Chapter: Thermal Physics and Theoretical Heat Engineering  
Keywords: redox reactions, methane, oxygen-containing flow, combustion diffusion mode, combustion kinetic mode, experiment

Abstract

The paper presents experimental results of studying the macrokinetic intensification and stabilization processes of methane oxidation (combustion) in the high-enthalpy oxygen-containing flow inside the constant cross section channel being finite along its length. Calculation and experimental data are presented on the methane oxidation gas-dynamic intensification and stabilization in the recirculation zone of the high-enthalpy oxygen-containing flow formed behind the wedge-shaped bluff body. Computational and experimental studies enabled to consider various configurations of the bluff bodies differing in their number and degree of the constant cross section channel obstruction. Dependence of the gas relative residence time in the recirculation zone behind the bluff bodies was determined for various configurations. Range of the initial enthalpy values of the high-enthalpy oxygen-containing flow of 350--700 kJ/kg was considered. Regularities were established for the influence of the flow obstruction degree on the physical and chemical processes completion in the channel under study. Methane oxidation intensity in the high-enthalpy oxygen-containing flow was compared with and without the gas-dynamic stabilization. The level of lower limit value of the fuel excess coefficient corresponding to the stable methane ignition and combustion was determined. The data obtained indicate intensification in the methane oxidation diffusion-kinetic regimes and make it possible to evaluate the factors that are limiting completion of the physical and chemical processes

This research was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2020-806 dated 29 September 2020)

Please cite this article in English as:

Arefyev K.Yu., Grishin I.M., Zakharov V.S., et al. Gas-dynamic stabilization and intensification of the methane oxidation macrokinetic processes in the high-enthalpy oxygen-containing flow. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 4 (109), pp. 52--78 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2023-4-52-78

References

[1] Urzay J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech., 2018, vol. 50, no. 1, pp. 593--627. DOI: http://dx.doi.org/10.1146/annurev-fluid-122316-045217

[2] Tripathi G., Sharma P., Dhar A. Effect of methane augmentations on engine performance and emissions. Alex. Eng. J., 2020, vol. 59, iss. 1, pp. 429--439. DOI: https://doi.org/10.1016/j.aej.2020.01.012

[3] Agora Energiewende and Ember (2021): the European power sector in 2020: up-to-date analysis on the electricity transition. Available at: https://www.agora-energiewende.de/en/publications/the-european-power-sector-in-2020 (accessed: 15.12.2021).

[4] Azatyan V.V. Chain nature of the combustion, explosion, and detonation of gases: new aspects of theory. Russ. J. Phys. Chem. A, 2015, vol. 89, pp. 1995--2005. DOI: https://doi.org/10.1134/S0036024415110035

[5] Kim N.J. Effect of an inlet temperature disturbance on the propagation of methane--air premixed flames in small tubes. Combust. Flame, 2009, vol. 156, iss. 7, pp. 1332--1338. DOI: https://doi.org/10.1016/j.combustflame.2009.02.004

[6] Cheng R.K., Oppenheim A.K. Autoignition in methane--hydrogen mixtures. Combust. Flame, 1984, vol. 58, iss. 2, pp. 125--139. DOI: https://doi.org/10.1016/0010-2180(84)90088-9

[7] Vasil’ev A.A. Ignition delay in multifuel mixtures. Combust. Explos. Shock Waves, 2007, vol. 43, no. 3, pp. 282--285. DOI: https://doi.org/10.1007/s10573-007-0041-2

[8] Austin J.M., Shepherd J.E. Detonations in hydrocarbon fuel blends. Combust. Flame, 2003, vol. 132, iss. 1-2, pp. 73--90. DOI: https://doi.org/10.1016/S0010-2180(02)00422-4

[9] Vasil’ev A.A. Cell size as the main geometric parameter of multifront detonation wave. J. Propuls. Power, 2006, vol. 22, no. 6, pp. 1245--1260. DOI: https://doi.org/10.2514/1.20348

[10] Hernandez-Rivera R., Troiani G., Pagliaroli T., et al. Detection of the thermoacoustic combustion instabilities of a slot burner based on a diagonal-wise recurrence quantification. Phys. Fluids, 2019, vol. 31, iss. 12, art. 124105. DOI: https://doi.org/10.1063/1.5124015

[11] Schefer R.W., Wicksall D.M., Agrawal A.K. Combustion of hydrogen-enriched methane in a lean premixed swirl-stabilized burner. Proc. Combust. Inst., 2002, vol. 29, iss. 1, pp. 843--851. DOI: https://doi.org/10.1016/S1540-7489(02)80108-0

[12] Afarin Y., Tabejamaat S. Effect of hydrogen on H2/CH4 flame structure of MILD combustion using the LES method. Int. J. Hydrog. Energy, 2013, vol. 38, iss. 8, pp. 3447--3458. DOI: https://doi.org/10.1016/j.ijhydene.2012.12.065

[13] Hernandez-Perez F.E., Groth C.P.T., Gulder O.L. Large-eddy simulation of lean hydrogen--methane turbulent premixed flames in the methane-dominated regime. Int. J. Hydrog. Energy, 2014, vol. 39, iss. 13, pp. 7147--7157. DOI: https://doi.org/10.1016/j.ijhydene.2014.02.028

[14] Dinkelacker F., Manickam B., Muppal S.P.R. Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach. Combust. Flame, 2011, vol. 158, iss. 9, pp. 1742--1749. DOI: https://doi.org/10.1016/j.combustflame.2010.12.003

[15] Zhang M., Wang J., Xie Y., et al. Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames. Int. J. Hydrogen Energy, 2013, vol. 38, iss. 26, pp. 11421--11428. DOI: https://doi.org/10.1016/j.ijhydene.2013.05.051

[16] Sun Z.-Y., Li G.-X. Turbulence influence on explosion characteristics of stoichiometric and rich hydrogen/air mixtures in a spherical closed vessel. Energy Convers. Manag., 2017, vol. 149, pp. 526--535. DOI: https://doi.org/10.1016/j.enconman.2017.07.051

[17] Sun Z.-Y. Experimental studies on the explosion indices in turbulent stoichiometric H2/CH4/air mixtures. Int. J. Hydrog. Energy, 2019, vol. 44, iss. 1, pp. 469--476. DOI: https://doi.org/10.1016/j.ijhydene.2018.02.094

[18] Day M.S., Gao X., Bell J.B. Properties of lean turbulent methane-air flames with significant hydrogen addition. Proc. Combust. Inst., 2011, vol. 33, iss. 1, pp. 1601--1608. DOI: https://doi.org/10.1016/j.proci.2010.05.099

[19] Therkelsen P.L., Enrique Portillo J., Littlejohn D., et al. Self-induced unstable behaviors of CH4 and H2/CH4 flames in a model combustor with a low-swirl injector. Combust. Flame, 2013, vol. 160, iss. 2, pp. 307--321. DOI: https://doi.org/10.1016/j.combustflame.2011.11.008

[20] Li D., Wang R., Yang G., et al. Effect of hydrogen addition on the structure and stabilization of a micro-jet methane diffusion flame. Int. J. Hydrogen Energy, 2021, vol. 46, iss. 7, pp. 5790--5798. DOI: https://doi.org/10.1016/j.ijhydene.2020.11.034

[21] Liu W., Kelley A., Law C. Flame propagation and counterflow nonpremixed ignition of mixtures of methane and ethylene. Combust. Flame, 2010, vol. 157, iss. 5, pp. 1027--1036. DOI: https://doi.org/10.1016/j.combustflame.2009.11.002

[22] Wang T., Luo Z., Wen H., et al. The explosion enhancement of methane-air mixtures by ethylene in a confined chamber. Energy, 2021, vol. 214, art. 119042. DOI: https://doi.org/10.1016/j.energy.2020.119042

[23] Shao J., Davidson D.F., Hanson R.K. A shock tube study of ignition delay times in diluted methane, ethylene, propene and their blends at elevated pressures. Fuel, 2018, vol. 225, pp. 370--380. DOI: https://doi.org/10.1016/j.fuel.2018.03.146

[24] Ivanov M.F., Kiverin A.D., Galburt V.A. About one method of acceleration of transition from deflagration to detonation in gaseous inflammable mixtures. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2008, no. 4 (31), pp. 38--45 (in Russ.).

[25] Ivanov M.F., Kiverin A.D., Rykov Yu.V. Peculiarities of flame propagation in closed volumes. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2010, no. 1 (36), pp. 21--39 (in Russ.).

[26] Wilson M.P., Bowersox R.D.W., Glawe D.D. Experimental investigation of the role of downstream ramps on a supersonic injection plume. J. Propuls. Power, 1999, vol. 15, no. 3, pp. 432--439. DOI: https://doi.org/10.2514/2.5462

[27] Sislian J.P., Schumacher J. A comparative study of hypersonic fuel/air mixing enhancement by ramp and cantilevered ramp injectors. AIAA Paper, 1999, art. 99-4873. DOI: https://doi.org/10.2514/6.1999-4873

[28] Wan J., Zhao H., Akkerman V. Anchoring mechanisms of a holder-stabilized premixed flame in a preheated mesoscale combustor. Phys. Fluids, 2020, vol. 32, iss. 9, art. 097103. DOI: https://doi.org/10.1063/5.0021864

[29] Arefyev K.Yu., Fedotova K.V., Krikunova A.I., et al. Mathematical and physical simulation of the cross-flow velocity pulsation effect on the flame structure during the diffusion mode of methane combustion. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2020, no. 2 (89), pp. 65--84 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2020-2-65-84

[30] Chaudhuri S., Cetegen B.M. Blowoff characteristics of bluff-body stabilized conical premixed flames with upstream spatial mixture gradients and velocity oscillations. Combust. Flame, 2008, vol. 153, iss. 4, pp. 616--633. DOI: https://doi.org/10.1016/j.combustflame.2007.12.008

[31] Nair S., Lieuwen T. Near-blowoff dynamics of a bluff-body stabilized flame. J. Propuls. Power, 2007, vol. 23, no. 2, pp. 421--427. DOI: https://doi.org/10.2514/1.24650

[32] Arefyev K.Yu., Krikunova A.I., Panov V.A. Experimental study of premixed methane-air flame coupled with an external acoustic field. J. Phys. Conf. Ser., 2019, vol. 1147, art. 012050. DOI: http://dx.doi.org/10.1088/1742-6596/1147/1/012050

[33] Sosounov V. Research and development of ramjets/ramrockets. Part III. The study of gaseous hydrogen ram combustors. AGARD Lect. Ser., 1993, vol. 194, pp. 1--6.

[34] Aref’ev K.Yu., Aleksandrov V.Yu., Rudinskiy A.V., et al. Investigation of the plasma effect on the combustion efficiency of gaseous methane in a supersonic flow. High Temp., 2022, vol. 60, suppl. 1, pp. S59--S66. DOI: https://doi.org/10.1134/S0018151X21040039

[35] Zhu Q., Zhao X., Deng Y. Advances in the partial oxidation of methane to synthesis gas. J. Nat. Gas Chem., 2004, vol. 13, no. 4, pp. 191--203.

[36] Mikofski M.A., Williams T.C., Shaddix C.R., et al. Flame height measurement of laminar inverse diffusion flames. Combust. Flame, 2006, vol. 146, iss. 1-2, pp. 63--72. DOI: https://doi.org/10.1016/j.combustflame.2006.04.006

[37] Tsuji H., Gupta A.K., Hasegawa T., et al. High temperature air combustion. CRC Press, 2003.

[38] Weber R., Orsino S., Lallemant N., et al. Combustion of natural gas with high temperature air and large quantities of flue gas. Proc. Combust. Inst., 2000, vol. 28, iss. 1, pp. 1315--1321. DOI: https://doi.org/10.1016/S0082-0784(00)80345-8

[39] Vinogradov V.A., Shikhman Yu.M., Albegov R.V., et al. Experimental research of methane combustion in high speed subsonic airflow. AIAA Paper, 2003, art. 2003-6940. DOI: https://doi.org/10.2514/6.2003-6940

[40] Vinogradov V.A., Shikhman Y.M., Albegov R.V., et al. About possibility of effective methane combustion in high speed subsonic airflow. AIAA Paper, 2002, art. 2002-5206.

[41] Xiao W., Huang Y. Lean blowout limits of a gas turbine combustor operated with aviation fuel and methane. Heat Mass Transf., 2015, vol. 52, no. 5, pp. 1015--1024. DOI: https://doi.org/10.1007/s00231-015-1622-3

[42] Albegov R.V., Vinogradov V.A., Shikhman Yu.M. Combustion of methane injected into an air flow with high subsonic velocities by different methods. Combust. Explos. Shock Waves, 2016, vol. 52, no. 1, pp. 14--25. DOI: https://doi.org/10.1134/S0010508216010020

[43] Batraev I.S., Prokhorov E.S., Ul’yanitskii V.Y. Acceleration of dispersed particles by gas detonation productions in an expanding channel. Combust. Explos. Shock Waves, 2021, vol. 57, no. 5, pp. 588--596. DOI: https://doi.org/10.1134/S0010508221050087

[44] Zipf R.K. Jr., Gamezo V.N., Sapko M.J., et al. Methane--air detonation experiments at NIOSH lake Lynn laboratory. J. Loss Prev. Process. Ind., 2013, vol. 26, iss. 2, pp. 295--301. DOI: https://doi.org/10.1016/j.jlp.2011.05.003

[45] Aleksandrov V.Yu., Arefyev K.Yu., Baskakov A.A., et al. Detonation of air-methane mixture in a supersonic crossflow. BMSTU Journal of Mechanical Engineering, 2017, no. 2 (683), pp. 98--108 (in Russ.). DOI: http://dx.doi.org/10.18698/0536-1044-2017-2-98-108

[46] Guiberti T.F., Durox D., Scouflaire P., et al. Impact of heat loss and hydrogen enrichment on the shape of confined swirling flames. Proc. Combust. Inst., 2015, vol. 35, iss. 2, pp. 1385--1392. DOI: http://dx.doi.org/10.1016/j.proci.2014.06.016

[47] Aref’ev K.Yu., Kukshinov N.V., Serpinskii O.S. Methodology of experimental determining the combustion efficiency of fuel mixture flows in channels of variable cross-section. Fluid Dyn., 2017, vol. 52, no. 5, pp. 682--694. DOI: https://doi.org/10.1134/S0015462817050106

[48] Grishin I., Zakharov V., Aref’ev K. Experimental study of methane combustion efficiency in a high-enthalpy oxygen-containing flow. App. Sci., 2022, vol. 12, iss. 2, art. 899. DOI: https://doi.org/10.3390/app12020899

[49] Annushkin M.Yu. Basic laws of burn-out in turbulent hydrogen jets in air channels. Fizika goreniya i vzryva, 1981, no. 4, pp. 59--71 (in Russ.).

[50] Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J., 1994, vol. 32, no. 8, pp. 1598--1605. DOI: https://doi.org/10.2514/3.12149

[51] Ivanov M.F., Kiverin A.D., Yakovenko I.S. Gas-dynamic processes influence on combustion evolution close to concentration flammability limits. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2015, no. 6 (63), pp. 85--98 (in Russ.). DOI: http://dx.doi.org/10.18698/1812-3368-2015-6-85-98

[52] Ivanov M.F., Kiverin A.D., Smygalina A.E. Ignition of hydrogen-air mixture near lower flammability limit. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2013, no. 1 (48), pp. 89--108 (in Russ.).

[53] Aref’ev K.Yu., Voronetskii A.V., Il’chenko M.A. Dynamic characteristics of a resonant gas-dynamic system for ignition of a fuel mixture. Combust Explos. Shock Waves, 2013, vol. 49, no. 6, pp. 657--661. DOI: https://doi.org/10.1134/S0010508213060038

[54] Aref’ev K.Yu., Voronetskii A.V., Il’chenko M.A., et al. Numerical and experimental study of ignition of a two-phase fuel composition (ethanol + air) in a resonance gas-dynamic system. Combust Explos. Shock Waves, 2017, vol. 53, no. 4, pp. 398--405. DOI: https://doi.org/10.1134/S0010508217040037

[55] Aleksandrov V.Yu., Aref’ev K.Yu., Il’chenko M.A. Numerical and experimental study of oscillatory processes in small-size combustion heaters of air. Combust Explos. Shock Waves, 2016, 52, no. 4, pp. 439--445. DOI: https://doi.org/10.1134/S0010508216040079