|

Production of Cr2O3/TiO2--SiO2 Core-Shell Hollow Composite Material in the Form of Spherical Granules

Authors: Khalipova O.S., Kuznetsova S.A., Selyunina L.A., Rogacheva A.O. Published: 13.11.2023
Published in issue: #5(110)/2023  
DOI: 10.18698/1812-3368-2023-5-154-169

 
Category: Chemistry | Chapter: Physical Chemistry  
Keywords: chromium(III) oxide, TiO2--SiO2, composite material, template synthesis, sol-gel synthesis, catalytic activity

Abstract

A method of preparation of a core-shell hollow Cr2O3/TiO2--SiO2 composite material in the form of spherical granules is proposed. This method combines the templat and sol-gel methods of synthesis of oxide composites. In contrast to previous studies, macro-porous cationite TOKEM-250 with acryl-divenyl-benzene matrix and carboxyl functional groups in sodium form was used as a templat to obtain such composites. The using of such structure and form of cationite made it possible to obtain strong granules possessing catalytic activity in the reaction of para-xylene combustion. Time and temperature conditionsof decomposition of TOKEHM-250 cationite saturated with Cr3+ cations and seasoned in ash based on tetrabutoxytitan and tetraethoxysilane were developed. This makes it possible to form strong hollow spherical granules of the composite material. The solid Cr2O3/TiO2--SiO2 composite is formed at a temperature of at least 500 °C and a furnace heating rate of 5 °C/min. X-ray diffraction and micro-X-ray diffraction analyses showed that the core of the spherical granules was chromium(III) oxide with the corundum structure and the shell was an X-ray amorphous mixture of titanium(IV) oxide and silicon(IV) oxide. The more even distribution of the shell is achieved by increasing the silicon dioxide content. The obtained hollow core-shell composite materials of Cr2O3/TiO2--SiO2 type in the form of spherical granules of 0.3 to 0.8 mm in size are characterized by specific surface area of 4.3 and 6.1 m2/g depending on the silicon dioxide content in the shell. Such materials exhibit catalytic activity in the para-xylene oxidation reaction. Maximum conversion of para-xylene on Cr2O3/TiO2--SiO2 composite with the content of silicon dioxide 20 mol. % is reached at temperature 350 °C and makes 100 %

The work was carried out within the framework of a state assignment Ministry of Education and Science of Russian Federation (project no. FSWM-2020-0037)

Please cite this article in English as:

Khalipova O.S., Kuznetsova S.A., Selyunina L.A., et al. Production of Cr2O3/TiO2--SiO2 core-shell hollow composite material in the form of spherical granules. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 5 (110), pp. 154--169 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2023-5-154-169

References

[1] Kamal M.S., Razzak S.A., Hossain M.M. Catalytic oxidation of volatile organic compounds (VOCs) --- a review. Atmos. Environ., 2016, vol. 140, pp. 117--134. DOI: https://doi.org/10.1016/j.atmosenv.2016.05.031

[2] Shanbhag P.V., Guha A.K., Sirkar K.K. Membrane-based integrated absorption−oxidation reactor for destroying VOCs in air. Environ. Sci. Technol., 1996, vol. 30, iss. 12, pp. 3435--3440. DOI: https://doi.org/10.1021/es950916j

[3] Zhang C., Wang C., Zhan W., et al. Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B = Co, Ni, Fe) catalysts. Appl. Catal. B, 2013, vol. 129, pp. 509--516. DOI: https://doi.org/10.1016/j.apcatb.2012.09.056

[4] Chen X., Chen X., Cai S., et al. Catalytic combustion of toluene over mesoporous Cr2O3-supported platinum catalysts prepared by in situ pyrolysis of MOFs. Chem. Eng. J., 2018, vol. 334, pp. 768--779. DOI: https://doi.org/10.1016/j.cej.2017.10.091

[5] Li W.B., Wang J.X., Gong H. Catalytic combustion of VOCs on non-noble metal catalysts. Catal. Today, 2009, vol. 148, iss. 1-2, pp. 81--87. DOI: https://doi.org/10.1016/j.cattod.2009.03.007

[6] Weng X., Sun P., Long Y., et al. Catalytic oxidation of chlorobenzene over MnxCe1 -- xO2/HZSM-5 catalysts: a study with practical implications. Environ. Sci. Technol., 2017, vol. 51, iss. 14, pp. 8057--8066. DOI: https://doi.org/10.1021/acs.est.6b06585

[7] Areerob Y., Cho J.Y., Jang W.K., et al. Enhanced sonocatalytic degradation of organic dyes from aqueous solutions by novel synthesis of mesoporous Fe3O4-graphene/ZnO@SiO2 nanocomposites. Ultrason Sonochem., 2018, vol. 41, pp. 267--278. DOI: https://doi.org/10.1016/j.ultsonch.2017.09.034

[8] Kuznetsova S.A., Khalipova O.S., Lisitsa K.V., et al. Fabrication of MoO3/TiO2--SiO2 with hollow spherical shape using resin as the template: effect of decomposition of resins. J. Appl. Polym. Sci., 2021, vol. 138, iss. 34, pp. 50851--50861. DOI: https://doi.org/10.1002/app.50851

[9] Zhou W., Cheng K., Kang J., et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem. Soc. Rev., 2019, vol. 48, iss. 12, pp. 3193--3228. DOI: https://doi.org/10.1039/C8CS00502H

[10] Li P., Cao C.-Y., Liu H., et al. Synthesis of a core--shell--shell structured acid-base bifunctional mesoporous silica nanoreactor (MS-SO3H@MS@MS-NH2) and its application in tandem catalysis. J. Mater. Chem. A, 2013, vol. 1, iss. 41, pp. 12804--12810. DOI: https://doi.org/10.1039/C3TA13185H

[11] Yim S.D., Nam I.-S. Characteristics of chromium oxides supported on TiO2 and Al2O3 for the decomposition of perchloroethylene. J. Catal., 2004, vol. 221, iss. 2, pp. 601--611. DOI: https://doi.org/10.1016/j.jcat.2003.09.026

[12] Yim S.D., Chang K.-H., Koh D.J., et al. Catalytic removal of perchloroethylene (PCE) over supported chromium oxide catalysts. Catal. Today, 2000, vol. 63, iss. 2-4, pp. 215--222. DOI: https://doi.org/10.1016/S0920-5861(00)00462-4

[13] Padilla A.M., Corella J., Toledo J.M. Total oxidation of some chlorinated hydrocarbons with commercial chromia based catalysts. Appl. Catal. B, 1999, vol. 22, iss. 2, pp. 107--121. DOI: https://doi.org/10.1016/S0926-3373(99)00043-0

[14] Rogacheva A.O., Buzaev A.A., Brichkov A.S., et al. Catalytically active composite material based on TiO2/Cr2O3 hollow spherical particles. Kinet. Catal., 2019, vol. 60, no. 4, pp. 484--489. DOI: https://doi.org/10.1134/S002315841904013X

[15] Sinha A.K., Suzuki K. Three-dimensional mesoporous chromium oxide: a highly efficient material for the elimination of volatile organic compounds. Angew. Chem. Int. Ed., 2004, vol. 44, iss. 2, pp. 271--273. DOI: https://doi.org/10.1002/anie.200461284

[16] Wang Y., Yuan X., Liu X., et al. Mesoporous single-crystal Cr2O3: synthesis, characterization, and its activity in toluene removal. Solid State Sci., 2008, vol. 10, iss. 9, pp. 1117--1123. DOI: https://doi.org/10.1016/j.solidstatesciences.2007.11.018

[17] Pradier C.M., Rodrigues F., Marcus P., et al. Supported chromia catalysts for oxidation of organic compounds: the state of chromia phase and catalytic performance. Appl. Catal. B, 2000, vol. 27, iss. 2, pp. 73--85. DOI: https://doi.org/10.1016/S0926-3373(00)00142-9

[18] Rotter H., Landau M.V., Herskowitz M. Combustion of chlorinated VOC on nano-structured chromia aerogel as catalyst and catalyst support. Environ. Sci. Technol., 2005, vol. 39, iss. 17, pp. 6845--6850. DOI: https://doi.org/10.1021/es0500052

[19] Rotter H., Landau M.V., Carrera M., et al. High surface area chromia aerogel efficient catalyst and catalyst support for ethylacetate combustion. Appl. Catal. B, 2004, vol. 47, iss. 2, pp. 111--126. DOI: https://doi.org/10.1016/j.apcatb.2003.08.006

[20] Fresno F., Hernandez-Alonso M.D., Tudela D., et al. Photocatalytic degradation of toluene over doped and coupled (Ti,M)O2 (M = Sn or Zr) nanocrystalline oxides: influence of the heteroatom distribution on deactivation. Appl. Catal. B, 2008, vol. 84, iss. 3-4, pp. 598--606. DOI: https://doi.org/10.1016/j.apcatb.2008.05.015

[21] Hussain M., Ceccarelli R., Marchisio D., et al. Synthesis, characterization, and photocatalytic application of novel TiO2 nanoparticles. Chem. Eng. J., 2010, vol. 157, iss. 1, pp. 45--51. DOI: https://doi.org/10.1016/j.cej.2009.10.043

[22] Zou L., Luo Y., Hooper M., et al. Removal of VOCs by photocatalysis process using adsorption enhanced TiO2--SiO2 catalyst. Chem. Eng. Process.: Process Intensif., 2006, vol. 45, iss. 11, pp. 959--964. DOI: https://doi.org/10.1016/j.cep.2006.01.014

[23] Das S., Perez-Ramirez J., Gong J., et al. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev., 2020, vol. 49, iss. 10, pp. 2937--3004. DOI: https://doi.org/10.1039/C9CS00713J

[24] Rogacheva A.O., Khalipova O.S., Brichkov A.S., et al. Production of TiO2/Cr2O3 composite material in the spherical form. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2019, no. 4 (85), pp. 124--133. DOI: https://doi.org/10.18698/1812-3368-2019-4-124-133

[25] Syryamkin V.I., Bureev A.Sh., Vasilyev A.V., et al. Sposob rentgenovskoy tomografii i ustroystvo dlya ego osushchestvleniya [Method for X-ray tomography and apparatus for realising method]. Patent RU 2505800. Appl. 10.05.2012, publ. 27.01.2014 (in Russ.).