Polyacrylonitrile-Based Composite Carbon Nanofibers with Tailored Microporosity

Authors: Vtyurina E.S., Ponomarev Ig.I., Buyanovskaya A.G., Ponomarev I.I., Skupov K.M. Published: 24.05.2023
Published in issue: #2(107)/2023  
DOI: 10.18698/1812-3368-2023-2-160-172

Category: Chemistry | Chapter: Organic Chemistry  
Keywords: polyacrylonitrile, polymer nanofibers, carbon nanofibers, CO2 adsorption, specific surface area, electrospinning, micropores


Carbon nanofibers are currently used in many applications including electrochemical power sources, particularly, fuel cells. Their properties are highly dependent on the micro- and mesoporous structure. Here we provide a porosimetric analysis of the polyacrylonitrile-based electrospun composite Zr- and Ni-containing carbon nanofiber mats by N2 and CO2 adsorption methods for the first time. It was found that pyrolysis temperature affects specific surface area and volume: the values increase for the sample pyrolyzed at 900 °C compared with the initial stabilized nanofibers (300 °C, air) according to the Dubinin --- Radushkevich, non-local density functional theory (NLDFT) and grand canonical Monte-Carlo methods (GCMC). For higher pyrolysis temperatures (1000 and 1200 °C), the porosimetric parameters decrease compared with the one pyrolyzed at 900 °C. According to the NLDFT and GCMC pore size distribution, the difference for pyrolyzed samples is mostly related to a sharp decrease in the specific surface area for pores with a size of ~ 0.5 nm and an increase for pores at 0.55--0.8 nm compared with the initial stabilized sample. The study demonstrates a way to adjust porosimetric parameters depending on the pyrolysis conditions of the nanofiber mats, since it can improve characteristics of such type of carbon materials in electrochemical devices

The study was financially supported by Russian Science Foundation (grant no. 22-13-00065)

Please cite this article as:

Vtyurina E.S., Ponomarev Ig.I., Buyanovskaya A.G., et al. Polyacrylonitrile-based composite carbon nanofibers with tailored microporosity. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 2 (107), pp. 160--172. DOI: https://doi.org/10.18698/1812-3368-2023-2-160-172


[1] Yang L., Shui J., Du L., et al. Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Adv. Mater., 2019, vol. 31, iss. 13, art. 1804799. DOI: https://doi.org/10.1002/adma.201804799

[2] Nie Y., Wei Z. Electronic and physical property manipulations: recent achievements towards heterogeneous carbon-based catalysts for oxygen reduction reaction. ChemCatChem, 2019, vol. 11, iss. 24, pp. 5885--5897. DOI: https://doi.org/10.1002/cctc.201901584

[3] Volfkovich Yu.M., Sosenkin V.E., Bagotsky V.S. Structural and wetting properties of fuel cell components. J. Power Sources, 2010, vol. 195, iss. 17, pp. 5429--5441. DOI: https://doi.org/10.1016/j.jpowsour.2010.03.002

[4] Volfkovich Yu.M., Filippov A.N., Bagotsky V.S. Structural properties of porous materials and powders used in different fields of science and technology. Engineering Materials and Processes. London, New York, Springer, 2014. DOI: https://doi.org/10.1007/978-1-4471-6377-0

[5] Li Q., Aili D., Hjuler H.A. (eds), et al. High temperature polymer electrolyte membrane fuel cells. Cham, Springer, 2016. DOI: https://doi.org/10.1007/978-3-319-17082-4

[6] Zeis R. Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells. Beilstein J. Nanotechnol., 2015, vol. 6, pp. 68--83. DOI: https://doi.org/10.3762/bjnano.6.8

[7] Araya S.S., Zhou F., Liso V., et al. A comprehensive review of PBI-based high temperature PEM fuel cells. Int. J. Hydrogen Energ., 2016, vol. 41, iss. 46, pp. 21310--21344. DOI: https://doi.org/10.1016/j.ijhydene.2016.09.024

[8] Zhang J. PEM fuel cell electrocatalysts and catalyst layers. Springer, 2008.

[9] Chandan A., Hattenberger M., El-Kharouf A., et al. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) --- a review. J. Power Sources, 2013, vol. 231, pp. 264--278. DOI: https://doi.org/10.1016/j.jpowsour.2012.11.126

[10] Rosli R.E., Sulong A.B., Daud W.R.W. et al. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int. J. Hydrogen Energ., 2017, vol. 42, iss. 14, pp. 9293--9314. DOI: https://doi.org/10.1016/j.ijhydene.2016.06.211

[11] Myles T., Bonville L., Maric R. Catalyst, membrane, free electrolyte challenges, and pathways to resolutions in high temperature polymer electrolyte membrane fuel cells. Catalysts, 2017, vol. 7, iss. 1, art. 16. DOI: https://doi.org/10.3390/catal7010016

[12] Quartarone E., Angioni S., Mustarelli P. Polymer and composite membranes for proton-conducting, high-temperature fuel cells: a critical review. Materials, 2017, vol. 10, iss. 7, art. 687. DOI: https://doi.org/10.3390/ma10070687

[13] Delikaya O., Bevilacqua N., Eifert L., et al. Porous electrospun carbon nanofibers network as an integrated electrode-gas diffusion layer for high temperature polymer electrolyte membrane fuel cells. Electrochim. Acta., 2020, vol. 345, art. 136192. DOI: https://doi.org/10.1016/j.electacta.2020.136192

[14] Borup R., Meyers J., Pivovar B., et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev., 2007, vol. 107, no. 10, pp. 3904--3951. DOI: https://doi.org/10.1021/cr050182l

[15] Debe M.K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, vol. 486, pp. 43--51. DOI: https://doi.org/10.1038/nature11115

[16] Steele B.C.H., Heinzel A. Materials for fuel-cell technologies. Nature, 2001, vol. 414, pp. 345--352. DOI: https://doi.org/10.1038/35104620

[17] Arsalis A. A comprehensive review of fuel cell-based micro-combined-heat-and-power systems. Renew. Sust. Energ. Rev., 2019, vol. 105, pp. 391--414. DOI: https://doi.org/10.1016/j.rser.2019.02.013

[18] Wang Y., Chen K.S., Mishler J., et al. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energ., 2011, vol. 88, iss. 4, pp. 981--1007. DOI: https://doi.org/10.1016/j.apenergy.2010.09.030

[19] Myles T., Bonville L., Maric R. Catalyst, membrane, free electrolyte challenges, and pathways to resolutions in high temperature polymer electrolyte membrane fuel cells. Catalysts, 2017, vol. 7, iss. 1, art. 16. DOI: https://doi.org/10.3390/catal7010016

[20] Zamora H., Plaza J., Canizares P., et al. Improved electrodes for high temperature proton exchange membrane fuel cells using carbon nanospheres. ChemSusChem, 2016, vol. 9, iss. 10, pp. 1187--1193. DOI: https://doi.org/10.1002/cssc.201600050

[21] Jeon Y., Park J.-I., Ok J., et al. Enhancement of catalytic durability through nitrogen-doping treatment on the CNF-derivatized ACF support for high temperature PEMFC. Int. J. Hydrogen Energy, 2016, vol. 41, iss. 16, pp. 6864--6876. DOI: https://doi.org/10.1016/j.ijhydene.2016.03.021

[22] Wang X.X., Tan Z.H., Zeng M., et al. Carbon nanocages: а new support material for Pt catalyst with remarkably high durability. Sci. Rep., 2014, vol. 4, art. 4437. DOI: https://doi.org/10.1038/srep04437

[23] Chan S., Jankovic J., Susac D., et al. Electrospun carbon nanofiber catalyst layers for polymer electrolyte membrane fuel cells: fabrication and optimization. J. Mater. Sci., 2018, vol. 53, no. 16, pp. 11633--11647. DOI: https://doi.org/10.1007/s10853-018-2411-4

[24] Sharma A., Jindal J., Mittal A., et al. Carbon materials as CO2 adsorbents: a review. Environ. Chem. Lett., 2021, vol. 19, no. 2, pp. 875--910. DOI: https://doi.org/10.1007/s10311-020-01153-z

[25] Ponomarev I.I., Zhigalina O.M., Skupov K.M., et al. Preparation and thermal treatmentinfluence on Pt-decorated electrospun carbon nanofiber electrocatalysts. RSC Adv., 2019, vol. 9, iss. 47, pp. 27406--27418. DOI: https://doi.org/10.1039/C9RA05910E

[26] Ponomarev I.I., Skupov K.M., Naumkin A.V., et al. Probing of complex carbon nanofiber paper as gas-diffusion electrode for high temperature polymer electrolyte membrane fuel cell. RSC Adv., 2019, vol. 9, iss. 1, pp. 257--267. DOI: https://doi.org/10.1039/C8RA07177B

[27] Zhigalina V.G., Zhigalina O.M., Ponomarev I.I., et al. Electron microscopy study of new composite materials based on electrospun carbon nanofibers. CrystEngComm, 2017, vol. 19, iss. 27, pp. 3792--3800. DOI: https://doi.org/10.1039/C7CE00599G

[28] Skupov K.M., Ponomarev I.I., Razorenov D.Yu., et al. Carbon nanofiber paper cathode modification for higher performance of phosphoric acid fuel cells on polybenzimidazole membrane. Russ. J. Electrochem., 2017, vol. 53, no. 7, pp. 728--733. DOI: https://doi.org/10.1134/S1023193517070114

[29] Skupov K.M., Ponomarev I.I., Razorenov D.Y., et al. Carbon nanofiber paper electrodes based on heterocyclic polymers for high temperature polymer electrolyte membrane fuel cell. Macromol. Symp., 2017, vol. 375, no. 1, art. 1600188. DOI: https://doi.org/10.1002/masy.201600188

[30] Ponomarev I.I., Skupov K.M., Razorenov D.Yu., et al. Electrospun nanofiber pyropolymer electrodes for fuel cells on polybenzimidazole membranes. Russ. J. Electrochem., 2016, vol. 52, no. 8, pp. 735--739. DOI: https://doi.org/10.1134/S1023193516080097

[31] Ponomarev I.I., Skupov K.M., Ponomarev Iv.I., et al. New gas-diffusion electrode based on heterocyclic microporous polymer PIM-1 for high-temperature polymer electrolyte membrane fuel cell. Russ. J. Electrochem., 2019, vol. 55, no. 6, pp. 552--557. DOI: https://doi.org/10.1134/S1023193519060156

[32] Ponomarev I.I., Razorenov D.Y., Ponomarev I.I., et al. Synthesis and studies of polybenzimidazoles for high-temperature fuel cells. Russ. J. Electrochem., 2014, vol. 50, no. 7, pp. 694--699. DOI: https://doi.org/10.1134/S1023193514070118

[33] Ponomarev I.I., Ponomarev I.I., Filatov I.Y., et al. Design of electrodes based on a carbon nanofiber nonwoven material for the membrane electrode assembly of a polybenzimidazole-membrane fuel cell. Dokl. Phys. Chem., 2013, vol. 448, no. 2, pp. 23--27. DOI: https://doi.org/10.1134/S0012501613020036

[34] Ponomarev I.I., Skupov K.M., Zhigalina O.M., et al. New carbon nanofiber composite materials containing lanthanides and transition metals based on electrospun polyacrylonitrile for high temperature polymer electrolyte membrane fuel cell cathodes. Polymers, 2020, vol. 12, iss. 6, art. 1340. DOI: https://doi.org/10.3390/polym12061340

[35] Pomomarev I.I., Razorenov D.Yu., Ponomarev I.I., et al. Polybenzimidazoles via polyamidation: a more environmentally safe process to proton conducting membrane for hydrogen HT-PEM fuel cell. Eur. Polym. J., 2021, vol. 156, art. 110613. DOI: https://doi.org/10.1016/j.eurpolymj.2021.110613

[36] Skupov K.M., Ponomarev I.I., Volfkovich Y.M., et al. Porous structure optimization of electrospun carbon materials. Russ. Chem. Bull., 2020, vol. 69, no. 6, pp. 1106--1113. DOI: https://doi.org/10.1007/s11172-020-2875-7

[37] Skupov K.M., Ponomarev I.I., Vol’fkovich Y.M., et al. The effect of the stabilization and carbonization temperatures on the properties of microporous carbon nanofiber cathodes for fuel cells on polybenzimidazole membrane. Polym. Sci. Ser. C, 2020, vol. 62, no. 2, pp. 231--237. DOI: https://doi.org/10.1134/S1811238220020149

[38] Dong Z., Kennedy S.J., Wu Y. Electrospinning materials for energy-related applications and devices. J. Power Sources, 2011, vol. 196, iss. 11, pp. 4886--4904. DOI: https://doi.org/10.1016/j.jpowsour.2011.01.090

[39] Inagaki M., Yang Y., Kang F. Carbon nanofibers prepared via electrospinning. Adv. Mater., 2012, vol. 24, iss. 19, pp. 2547--2566. DOI: https://doi.org/10.1002/adma.201104940

[40] Tenchurin T.Kh., Krasheninnikov S.N., Orekhov A.S., et al. Rheological features of fiber spinning from polyacrylonitrile solutions in an electric field. Structure and properties. Fibre Chem., 2014, vol. 46, no. 3, pp. 151--160. DOI: https://doi.org/10.1007/s10692-014-9580-y

[41] Yusof N., Ismail A.F. Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: a review. J. Anal. Appl. Pyrol., 2012, vol. 93, pp. 1--13. DOI: https://doi.org/10.1016/j.jaap.2011.10.001

[42] Zhang B., Kang F., Tarascon J.-M., et al. Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog. Mater. Sci., 2016, vol. 76, pp. 319--380. DOI: https://doi.org/10.1016/j.pmatsci.2015.08.002

[43] Kopec M., Lamson M., Yuan R., et al. Polyacrylonitrile-derived nanostructured carbon materials. Prog. Polym. Sci., 2019, vol. 92, pp. 89--134. DOI: https://doi.org/10.1016/j.progpolymsci.2019.02.003

[44] Rouquerol J., Rouquerol F., Sing K.S.W., et al. Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, 2012.

[45] Linares-Solano A., Stoeckli F. Commentary on the paper "On the adsorption affinity coefficient of carbon dioxide in microporous carbons" by E.S. Bickford et al. (Carbon 2004; 42: 1867--71). Carbon, 2005, vol. 43, iss. 3, pp. 658--660. DOI: https://doi.org/10.1016/j.carbon.2004.10.007

[46] Ewing M.B., Lilley T.H., Olofsson G.M., et al. Standard quantities in chemical thermodynamics. Fugacities, activities and equilibrium constants for pure and mixed phases (IUPAC Recommendations 1994). Pure Appl. Chem., 1994, vol. 66, iss. 3, pp. 533--552. DOI: https://doi.org/10.1351/pac199466030533