|

Fabrication and the Effects of the Experimental Structure Factor on Barium Titanate Ferroelectric Properties using Polydomain and Landau --- Khalatnikov Models

Authors: Adnan S.R., Kurniawan B., Soegijono B. Published: 05.07.2023
Published in issue: #3(108)/2023  
DOI: 10.18698/1812-3368-2023-3-131-144

 
Category: Chemistry | Chapter: Bioorganic Chemistry  
Keywords: barium titanate, ferroelectric, Polydomain model, Landau --- Khalatnikov model, structure factor

Abstract

In this report, powder of barium titanate (BaTiO3) was fabricated using the sol-gel method followed by a sintering process at 900 °C. X-ray diffraction (XRD) was carried out to determine the phase and the crystal structure of the barium titanate. XRD patterns were then refined using the Rietveld analysis method on Fullproof software. The results show the barium titanate (BaTiO3) phase has a tetragonal perovskite structure. EDAX and scanning electron microscope (SEM) were examined to analyze the chemical composition and morphology of the material powder respectively. The results showed that the powder barium titanate (BaTiO3) contains Ba, Ti, and O atoms. The crystallite size is 3 μm and the morphology look homogeneous. The structure factor obtained from the experiment is used to calculate the polarization hysteresis using Polydomain and Landau --- Khalatnikov models. The results of modeling using the structure factor approach using Landau --- Khalatnikov modified model and the Polydomain modified model showed the R-factor (Rwp) is 8.7 and 11.3 %

This research was partially supported by Penelitian Kerjasama Antar Perguruan Tinggi (PKPT) Research Grant, Ministry of Education, Culture, Research and Technology, the Republic of Indonesia under contract 069/E5/PG.02.00.PT/2022, 455/LL3/AK.04/2022, 002/SP-P.JAMAK/LPPM/VI/2022

Please cite this article as:

Adnan S.R., Kurniawan B., Soegijono B. Fabrication and the effects of the experimental structure factor on barium titanate ferroelectric properties using Polydomain and Landau --- Khalatnikov models. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 3 (108), pp. 131--144. DOI: https://doi.org/10.18698/1812-3368-2023-3-131-144

References

[1] Bhalla A.S., Saxena A., Guo R., et al. 100th anniversary of the discovery of ferro-electricity: how it impacted the current day physics. Ferroelectrics, 2020, vol. 569, iss. 1, pp. 348--356. DOI: https://doi.org/10.1080/00150193.2020.1847141

[2] Tokay O., Yazıcı M. A review of potassium sodium niobate and bismuth sodium titanate based lead free piezoceramics. Mater. Today Commun., 2022, vol. 31, art. 103358. DOI: https://doi.org/10.1016/j.mtcomm.2022.103358

[3] Buscaglia V., Randall C.A. Size and scaling effects in barium titanate. An overview. J. Eur. Ceram. Soc., 2020, vol. 40, iss. 11, pp. 3744--3758. DOI: https://doi.org/10.1016/j.jeurceramsoc.2020.01.021

[4] Dudem B., Kim D.H., Bharat L.K., et al. Highly-flexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting. Appl. Energy, 2018, vol. 230, pp. 865--874. DOI: https://doi.org/10.1016/j.apenergy.2018.09.009

[5] Zheng T., Zhao H., Huang Y., et al. Piezoelectric calcium/manganese-doped barium titanate nanofibers with improved osteogenic activity. Ceram. Int., 2021, vol. 47, no. 20, pp. 28778--28789. DOI: https://doi.org/10.1016/j.ceramint.2021.07.038

[6] Wang H.W. Processing and characterization of microwave dielectric ceramics and thin films-Nd2(Ti2/3Al1/3)3O9-δ and (Ba0.7Sr0.3)TiO3. Tamkang J. Sci. Eng., 2002, vol. 5, no. 2, pp. 113--116. DOI: https://doi.org/10.6180/jase.2002.5.2.07

[7] Wang H.W., Cheng S.-Y. Ferroelectric heater by use of Pb(ZrTi)O3 and BaTiO3 ceramics. Tamkang J. Sci. Eng., 2000, vol. 3, no. 4, pp. 243--248. DOI: https://doi.org/10.6180/jase.2000.3.4.02

[8] Sangwan K.M., Ahlawat N., Kundu R.S., et al. Improved dielectric and ferroelectric properties of Mn-doped barium zirconium titanate (BZT) ceramics for energy storage applications. J. Phys. Chem. Solids, 2018, vol. 117, pp. 158--166. DOI: https://doi.org/10.1016/j.jpcs.2018.01.051

[9] Butee S., Kambale K.R., Ghorpade A., et al. Significant improvement in Curie temperature and piezoelectric properties of BaTiO3 with minimum Pb addition. J. Asian Ceram. Soc., 2019, vol. 7, iss. 4, pp. 407--416. DOI: https://doi.org/10.1080/21870764.2019.1656359

[10] Mehta A., Sachdev S., Kumar P., et al. Structural, dielectric, ferroelectric and piezo-electric properties of La and Fe substituted barium titanate ceramics. Ph. Transit., 2022, vol. 95, iss. 7, pp. 515--522. DOI: https://doi.org/10.1080/01411594.2022.2078209

[11] Jiang X., Wang H., Wang X., et al. Synergetic effect of piezoelectricity and Ag deposition on photocatalytic performance of barium titanate perovskite. Sol. Energy, 2021, vol. 224, pp. 455--461. DOI: https://doi.org/10.1016/j.solener.2021.06.032

[12] Acosta M., Novak N., Rojas V., et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev., 2017, vol. 4, iss. 4, art. 041305. DOI: https://doi.org/10.1063/1.4990046

[13] Wang Y.-L., Wang X.-Y., Chu L.-Z., et al. Simulation of hysteresis loops for polycrystalline ferroelectrics by an extensive Landau-type model. Phys. Lett. A, 2009, vol. 373, iss. 46, pp. 4282--4286. DOI: https://doi.org/10.1016/j.physleta.2009.09.050

[14] Yu J., Wang L., Wang Y., et al. A compact model for the simulation of ferroelectric capacitor. Integr. Ferroelectr., 2005, vol. 75, iss. 1, pp. 35--45. DOI: https://doi.org/10.1080/10584580500413194

[15] Adnan S.R. Landau --- Khalatnikov modified model for predicting ZnO ferroelectric properties. AIP Conf. Proc., 2018, vol. 2043, iss. 1, art. 020007. DOI: https://doi.org/10.1063/1.5080026

[16] Noh Y., Jung M., Yoon J., et al. Switching dynamics and modeling of multi-domain Zr-Doped HfO2 ferroelectric thin films. Curr. Appl. Phys., 2019, vol. 19, iss. 4, pp. 486--490. DOI: https://doi.org/10.1016/j.cap.2019.01.022

[17] Wang L., Yu J., Wang Y., et al. Modeling ferroelectric capacitors based on the dipole switching theory. J. Appl. Phys., 2007, vol. 101, iss. 10, art. 104505. DOI: https://doi.org/10.1063/1.2729470

[18] Roscow J.I., Li Y., Hall D.A. Residual stress and domain switching in freeze cast porous barium titanate. J. Eur. Ceram. Soc., 2022, vol. 42, no. 4, pp. 1434--1444. DOI: https://doi.org/10.1016/j.jeurceramsoc.2021.11.046

[19] Su Y.P., Sim L.N., Coster H.G.L., et al. Incorporation of barium titanate nano-particles in piezoelectric PVDF membrane. J. Memb. Sci., 2021, vol. 640, art. 119861. DOI: https://doi.org/10.1016/j.memsci.2021.119861

[20] Tang Y., Wu C., Zhang P., et al. Degradation behaviour of non-sintered graphene/barium titanate/magnesium phosphate cement bio-piezoelectric composites. Ceram. Int., 2020, vol. 46, iss. 8, part B, pp. 12626--12636. DOI: https://doi.org/10.1016/j.ceramint.2020.02.028

[21] Devonshire A.F. Theory of ferroelectrics. Adv. Phys., 1954, vol. 3, iss. 10, pp. 85--130. DOI: https://doi.org/10.1080/00018735400101173

[22] Ginzburg V.L. On the dielectric properties of ferroelectric crystals and barium titanate. J. Phys. USSR, 1946, vol.10, no. 2, pp. 107--115.