Electronic Structure and Itinerant Magnetism of Hydrogenated Graphene Nanofilms

Авторы: Ilyasov V.V., Ershov I.V., Holodova O.M., Popova I.G. Опубликовано: 21.06.2019
Опубликовано в выпуске: #3(84)/2019  
DOI: 10.18698/1812-3368-2019-3-60-69

Раздел: Физика | Рубрика: Физика и технология наноструктур, атомная и молекулярная физика  
Ключевые слова: graphene nanostructures, electronic structure, density functional theory, itinerant magnetism

The peculiarities of spin-polarized electronic structure of multilayer graphene nanofilm (4-GNL:H) within the framework of Kohn --- Sham approximation were studied in the present work. The calculated band structure and spin-resolved electronic energy spectrum of the 4-GNL:H system were correlated with experimental UPS and XANES spectra of thin hydrogenated a-C:H films. As the band structure calculations show there is a dimensional quantization of energy spectrum in the 4-GNL:H system, and the energy gap of 0.11 eV appears in the spectrum. The self-consistent calculations also predict the existence of itinerant magnetism in the system, conditioned by hydrogen chemisorption

The work was prepared under the state contract for the implementation of research (no. 3.9100.2017/BCh, Ministry of Education and Science of the Russian Federation)


[1] Yazyev O.V., Helm L. Defect-induced magnetism in graphene. Phys. Rev. B, 2007, vol. 75, art. 125408. DOI: 10.1103/PhysRevB.75.125408

[2] Sheka E.F., Popova N.A., Popova V.A. Physics and chemistry of graphene. Emergentness, magnetism, mechanophysics and mechanochemistry. Phys. Usp., 2018, vol. 61, no. 7, pp. 645–691. DOI: 10.3367/UFNe.2017.11.038233

[3] Wang Y., Huang Y., Song Y., et al. Room-temperature ferromagnetism of graphene. Nano Lett., 2009, vol. 9, no. 1, pp. 220–224. DOI: 10.1021/nl802810g

[4] Yazyev O.V. Magnetism in disordered graphene and irradiated graphite. Phys. Rev. Lett., 2008, vol. 101, iss. 3, art. 037203. DOI: 10.1103/PhysRevLett.101.037203

[5] Naji S., Belhaj A., Labrim H., et al. Adsorption of Co and Ni on graphene with a double hexagonal symmetry: electronic and magnetic properties. J. Phys. Chem. C, 2014, vol. 118, no. 9, pp. 4924–4929. DOI: 10.1021/jp407820a

[6] Zhou Q., Yong Y., Ju W., et al. DFT study of the electronic structure and magnetism of defective graphene decorated with hydrogen-adatom. Physica E Low Dimens. Syst. Nanostruct., 2017, vol. 91, pp. 65–71. DOI: 10.1016/j.physe.2017.04.009

[7] Hallal A., Ibragim F., Yang H., et al. Tailoring magnetic insulator proximity effects in graphene: first-principles calculations. 2D Materials, 2017, vol. 4, no. 2, art. 025074. DOI: 10.1088/2053-1583/aa6663

[8] Ilyasov V.V., Popova I.G., Ershov I.V., et al. Ab initio study magnetism and interaction of graphene with the polar MnO(111) surface. App. Surf. Sci., 2017, vol. 419, pp. 924–932. DOI: 10.1016/j.apsusc.2017.05.075

[9] Grachev D.D., Rybakov Yu.P., Sevast’yanov L.A., et al. Discrete and continuous models and applied computational science. Teoriya, modelirovanie, eksperiment. Vestnik RUDN: Seriya Matematika. Informatika. Fizika [RUDN Journal of Mathematics, Information Sciences and Physics], 2010, no. 1, pp. 20–27 (in Russ.).

[10] Ilyasov V.V., Meschi B.C., Nguyen V.C., et al. Tuning the band structure, magnetic and transport properties of zigzag graphene nanoribbons/hexagonal boron nitride heterostructure with electric field. J. Chem. Phys., 2014, vol. 141, iss. 1, art. 014708. DOI: 10.1063/1.4885857

[11] Ilyasov V.V., Meshy B.C., Nguyen V.C., et al. Magnetism and transport properties of zigzag graphene nanoribbons/hexagonal boron nitride. J. App. Phys., 2014, vol. 115, iss. 5, art. 053708. DOI: 10.1063/1.4864261

[12] Terrones M., Botello-Mendez A.R., Campos-Delgado J., et al. Graphene and graphite nanoribbons: morphology, properties, syntesis, defects and applications. Nano Today, 2010, vol. 5, iss. 4, pp. 351–372. DOI: 10.1016/j.nantod.2010.06.010

[13] Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, vol. 140, iss. 4a, pp. 1133–1138. DOI: 10.1103/PhysRev.140.A1133

[14] Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett, 1996, vol. 77, iss. 18, art. 3865. DOI: 10.1103/PhysRevLett.77.3865

[15] Giannozzi P., Baroni S., Bonini N., et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter, 2009, vol. 21, no. 39, art. 395502. DOI: 10.1088/0953-8984/21/39/395502

[16] Ilyasov V.V., Popova I.G., Ershov I.V., et al. Electronic structure and physical properties of graphene/MnO (111) interface: ab initio study. Vestnik VGU. Seriya: Fizika. Matematika [Proceedings of Voronezh State University. Series: Physics. Mathematics], 2016, no. 4, pp. 31–41 (in Russ.).

[17] Wesner D., Krummacher S., Carr R., et al. Synchrotron-radiation studies of the transition of hydrogenated amorphous carbon to graphitic carbon. Phys. Rev. B, 1983, vol. 28, iss. 4, pp. 2152–2156. DOI: 10.1103/PhysRevB.28.2152

[18] Fink J., Muller-Heinzerling T., Pfluger J., et al. Structure and bonding of hydrocarbon plasma generated carbon films: an electron energy loss study. Solid State Commun., 1983, vol. 47, iss. 9, pp. 687–691. DOI: 10.1016/0038-109(83)90635-X

[19] Lieb E.H. Two theorems on the Hubbard model. Phys. Rev. Lett., 1989, vol. 16, iss. 10, pp. 1201–1204. DOI: 10.1103/PhysRevLett.62.1201