Anodic Dissolution of Tungsten-Zirconium Alloy in Alkaline Electrolyte

Authors: Berezina S.L., Goryacheva V.N., Dvulichanskaya N.N., Yermolaeva V.I. Published: 12.04.2017
Published in issue: #2(71)/2017  
DOI: 10.18698/1812-3368-2017-2-96-104

Category: Chemistry | Chapter: Electrochemistry  
Keywords: tungsten-zirconium alloy, electrode potential, polarization curve, anodic dissolution, current density

This article presents the results of studying the anodic behavior of W–Zr alloy samples with different Zr content in alkaline electrolyte. We examined the relationship between content of alloying ingredient and some parameters of electrochemical process and used potentiodynamic method for measuring volt-ampere curves. The rate of anodic dissolution was shown to increase with growth of zirconium content. In our research we investigated the influence of electrolyte composition on kinetics of W–Zr alloy anodic process and measured anodic curves obtained for 18% Zr samples in the presence of anionic additives of organic and non-organic nature. As a result, we found the differences in stationary potentials and anode-current density. Findings of the research showed that the 18% W–Zr alloy was the most electrochemical active in the presence of fluoride ions in alkaline electrolyte. This fact was proved by the shifts of electrode potentials on polarization curves to negative values and by growth of anodic current maximum.


[1] Lyakishev N.P., ed. Tsirkoniy-vol’fram. Diagrammy sostoyaniya dvoynykh metallicheskikh sistem: Spravochnik. T. 3. Kn. 2 [Zirconium-tungsten. In: State diagram of two-metal systems. Vol. 3. P. 2]. Moscow, Mashinostroenie Publ., 2000, рp. 428-429.

[2] Kurlov A.S., Gusev A.I. Fizika i khimiya karbidov vol’frama [Physics and chemistry of tungsten carbide]. Moscow, Fizmatlit Publ., 2013. 270 p.

[3] Solntsev Yu.P. Metally i splavy [Metals and alloys]. Sankt-Petersburg, Professional Publ., 2003. 268 p.

[4] Lyakishev N.P. Diagrammy sostoyaniya dvoynykh metallicheskikh sistem. T. 3. Kn. 1 [State diagram of two-metal systems. Vol. 3. P. 1] Moscow, Mashinostroenie Publ., 2001. 872 p.

[5] Pourbaix M. Atlas of electrochemical equilibria in aqueous solution. Oxford, Pergamon Press Limited, 1966. 644 p.

[6] Sukhotin A.M. Spravochnik po elektrokhimii [Handbook on electrochemistry]. Moscow, Khimiya Publ., 1981. 488 p.

[7] Tsygankova L.E., Senova L.A. The regularities of zirconium active dissolution in acidic fluoride media. Vestnik TGU. Ser. Estestvennye i tekhnicheskie nauki [Tambov University Reports. Ser. Natural and Technical Sciences], 1999, vol. 4, no. 3, pp. 301-304 (in Russ.).

[8] Berezina S.L., Golubev A.M., Puchkov Yu.A. Anodic oxidation kinetics of tungsten in alkaline solution. Trudy Shestoy Vserossiyskoy konferentsii "Neobratimye protsessy v prirode i tekhnike" [Proc. Russ. conf. "Irreversible processes in nature and technique"]. Moscow, Bauman MSTU Publ., 2011, рp. 299-301 (in Russ.).

[9] Pozdeeva A.A., Antonovskaya E.I., Sukhotin A.M. Tungsten electrochemical behavior in acid and alkaline environment. Nature and composition of anodic oxide films. Trudy GIPKh, 1970, no. 66, pp. 75-93 (in Russ.).

[10] Kolosnitsyn B.C., Yapryntseva O.A., Yatsyk N.V., Krasnogorskaya N.N. Anodic dissolution of molybdenum and tungsten in a solution of sodium sulfate. Russian Journal of Applied Chemistry, 2002, vol. 75, no. 4, pp. 662-664. DOI: 10.1023/A:1019593820191 Available at: http://link.springer.com/article/10.1023/A%3A1019593820191

[11] Anik M., Osseo-Asare K. Effect of pH on the anodic behavior of tungsten. J. of The Electrochemical Society, 2002, vol. 149, no. 6, pp. 224-233. DOI: 10.1149/1.1471544 Available at: http://jes.ecsdl.org/content/149/6/B224

[12] Smirnova L.V., Balmasov A.V., Rumyantsev E.M. Anodic behavior of tungsten in water-organic solutions of sodium chloride. Russian Journal of Electrochemistry, 2000, vol. 36, no. 7, pp. 712-715. DOI: 10.1007/BF02757668 Available at: http://link.springer.com/article/10.1007/BF02757668

[13] Baeshov A.B., Ivanov K.S., Abduvalieva U.A., Baeshova A.K. Potentiodynamic polarization curves of tungsten in nitric acid solution. Izvestiya NAN Respubliki Kazakhstan [Bulletin of NAS RK], 2011, vol. 378, no. 4, pp. 14-18 (in Russ.).

[14] Baeshov A.B., Abduvalieva U.A., Zhurinov M.Zh. Research on anodic behavior of tungsten in muriatic solutions by taking potentiodynamic polarization curves. Izvestiya NAN Respubliki Kazakhstan [Bulletin of NAS RK], 2009, vol. 373, no. 1, pp. 3-6 (in Russ.).

[15] Balmasov A.V., Vinogradov V.I., Lilin S.A. The effect of citrate ions on the anodic behavior of tungstate. Protection of Metals, 2006, vol. 42, no. 5, pp. 510-512. DOI: 10.1134/S0033173206050122 Available at: http://link.springer.com/article/10.1134/S0033173206050122

[16] Speranskaya E.F., Mertsalova M.V., Kulev I.I. The electrochemical properties of molybdenum and tungsten. Russian Chemical Reviews, vol. 35, no. 12, pp. 892-903. DOI: 10.1070/RC1966v035n12ABEH001547 Available at: http://iopscience.iop.org/article/10.1070/RC1966v035n12ABEH001547/pdf

[17] Damaskin B.B., Petriy O.A., Tsirlina G.A. Elektrokhimiya [Electrochemistry]. Moscow, Koloss Publ., 2006. 672 p.

[18] Lukomskiy Yu.Ya., Gamburg Yu.D. Fiziko-khimicheskie osnovy elektrokhimii [Physical-chemical fundamentals of electrochemistry]. Dolgoprudnyy, Intellekt Publ., 2013. 446 p.

[19] Musaeva N.D., Shakhverdiev Ya.Kh., Akhmedov E.I., Iskenderova K.A., Nagieva E.Kh. Investigation of solutions of sodium tungstate and D-(+)-tartaric acid by polarimetry, cryoscopy, and potentiometry. Russian Journal of Inorganic Chemistry, 2012, vol. 57, no. 5, pp. 763-767. DOI: 10.1134/S0036023612050178 Available at: http://link.springer.com/article/10.1134/S0036023612050178

[20] Musaeva N.D., Shakhverdiev Ya.Kh., Iskenderova K.A., et al. Research on interaction of tartrate-tungstate’s complex and sodium hydroxide in water solution. Nauchnye trudy Azerbaydzhanskogo tekhnicheskogo universiteta, 2008, vol. VII (27), no. 3, pp. 136-140 (in Russ.).