|

Weak Violation of Electroneutrality in the Heliogeospheres: Electroneutrality Disorders

Authors: Vysikaylo P.I. Published: 08.06.2020
Published in issue: #3(90)/2020  
DOI: 10.18698/1812-3368-2020-3-88-106

 
Category: Physics | Chapter: Theoretical Physics  
Keywords: solar wind, electroneutrality violation, gravitational interactions, Coulomb interactions, proton, alpha particle

We prove that the occurrence of constant fluxes of positive ions with a large ratio of the charge number (Z) to the mass number of the ion (M) --- Z/M in the solar wind (SW) is due to an insignificant violation of the electroneutrality of the Sun and the entire heliosphere, the absence of Debye shielding of the solar charge due to due to the presence of a constant flux (current) of high-energy electrons from the Sun throughout the heliosphere and the appearance for protons, alpha particles and other positive ions with a ratio Z/M ≥ 0.107, Coulomb mirrors that reflect and accelerate them reflecting and accelerating them from the Sun. For the first time, the effective charge (1.4 kC) and other parameters of a positively charged Sun, which make it possible to estimate the electric field strength (E/N) reduced to particle density (N), were calculated from the ionic composition of SW (according to the minimum Z/M positive ions observed in experiments). This model allowed us to estimate the electric field intensity (E/N) reduced to the density of particles N in the photosphere, chromosphere, corona of the Sun (E/N ≈ 27· 103 Td), heliosphere and to investigate the conditions necessary for reflection of various positively charged particles --- ions from the positively charged Sun

References

[1] XIII ezhegodnaya konf. "Fizika plazmy v solnechnoy sisteme" Sb. tez. [XIII Solar System Plasma Conf., February 12--16, 2018. Abs.]. Moscow, Space Research Institute, 2018, 381 p. (in Russ.). Available at: https://plasma2018.cosmos.ru/docs/abstract-book-plasma2018.pdf

[2] ACE SWICS 1.1 level 2 data. srl.caltech.edu: website. Available at: http://www.srl.caltech.edu/ACE/ASC/level2/lvl2DATA_SWICS-SWIMS.html (accessed: 14.11.2019).

[3] Steiger von R., Schwadron N.A., Fisk L.A., et al. Composition of quasi-stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer. J. Geophys. Res., 2000, vol. 105, iss. A12, pp. 27217--27238. DOI: https://doi.org/10.1029/1999JA000358

[4] Kostrov A.V. [Cosmic dust and global electric circuit of the Earth]. XIII Ezhegodnaya konf. "Fizika plazmy v solnechnoy sisteme". Sb. tez. [XIII Solar System Plasma Conf. Abs.]. Moscow, Space Research Institute, p. 9 (in Russ.).

[5] Smirnov B.M. Fizika global’noy atmosfery. Parnikovyy effekt, atmosfernoe elektrichestvo, evolyutsiya klimata [Global atmosphere physics. Greenhouse effect, atmospheric electricity, climate evolution]. Dolgoprudny, Intellekt Publ., 2017.

[6] Bazelyan E.M., Raizer Yu.P., Aleksandrov N.L. Non-stationary corona around multi-point system in atmospheric electric field: II. Altitude and time variation of electric field: II. Altitude and time variation of electric field. J. Atmos. Sol.-Terr. Phys., 2014, vol. 109, pp. 91--101. DOI: https://doi.org/10.1016/j.jastp.2013.12.010

[7] Born M. Atomic physics. Blackie and Son, 1963.

[8] Vysikaylo P.I., Belyaev V.V., Mitin V.S. Narushenie elektroneytral’nosti v nano-kompozitakh [Electroneutrality disruption in nano-composites]. Moscow, RUDN Publ., 2019.

[9] Zelenyi L.M., Veselovskiy I.S., eds. Plazmennaya geliogeofizika. T. 2 [Plasma heliophysics. Vol. 2]. Moscow, FIZMATLIT Publ., 2008.

[10] Vysikaylo P.I., Korotkova M.A. [Solar wind as a result of Coulomb mirror functioning in astrophysics]. XIII ezhegodnaya konf. "Fizika plazmy v solnechnoy sisteme". Sb. tez. [XIII Solar System Plasma Conf. Abs.]. Moscow, Space Research Institute, p. 223 (in Russ.).

[11] Vysikaylo P.I., Korotkova M.A. Determination of the Sun’s charge by the parameters of heavy ions in the solar wind. J. Phys.: Conf. Ser., 2018, vol. 1009, art. 012020. DOI: https://doi.org/10.1088/1742-6596/1009/1/012020

[12] Birkhoff G. Hydrodynamics. A study in logic, fact, and similitude. Princeton Univ. Press, 1950.

[13] Parker E. Solar wind. UFN, 1964, vol. 84, no. 9, pp. 169--182 (in Russ.). DOI: https://doi.org/10.3367/UFNr.0084.196409e.0169

[14] Hundhausen A.J. Coronal expansion and solar wind. Springer, 1972.

[15] Armand N.A., Ejimov A.I., Yakovlev O.I. A model of the solar wind turbulence from radio occultation experiments. Astron. Astrophys., 1987, vol. 183, pp. 135--141.

[16] Izmodenov V.V. Global structure of the heliosphere: 3D kinetic-MHD model and the interpretation of spacecraft data. Phys.-Usp., 2018, vol. 61, no. 8, pp. 793--804. DOI: https://doi.org/10.3367/UFNe.2017.04.038293

[17] Podgornyĭ I.M., Sagdeev R.Z. Physics of interplanetary plasma and laboratory experiments. Sov. Phys. Usp., 1970, vol. 12, no. 4, pp. 445--462. DOI: https://doi.org/10.1070/PU1970v012n04ABEH003754

[18] Vysikaylo P.I. Electric field cumulation in dissipative structures in gas discharge plasma. ZhETF, 2004, vol. 125, no. 5, pp. 1071--1081 (in Russ.).

[19] Vysikaylo P.I. [Unstability of focusing mass]. Mezhdunar. konf. MSS-09 Transformatsiya voln, kogerentnye struktury i turbulentnost’. Sb. tr. [Proc. Int. Conf. MSS-09. Mode conversion, coherent structures and turbulence]. Moscow, Lenard Publ., 2009, p. 387 (in Russ.).

[20] Vysikaylo P.I. Arkhitektura kumulyatsii v dissipativnykh strukturakh [Cumulation architecture in dissipative structures]. Saarbrucken, Palmarium Academic Publ., 2013.

[21] Vysikaylo P.I. [Vysikaylo --- Euler libration (cumulation) points, lines and surfaces in plasma with current]. XXXVII Mezhdunar. konf. po fizike plazmy i UTS [37th Int. Conf. Plasma Physics]. 2010 (in Russ.).

[22] Vysikaylo P.I. Cumulative point---L1 between two positively charged plasma structures (3-D Strata). IEEE Trans. Plasma Sci., 2014, vol. 42, iss. 12, pp. 3931--3935. DOI: https://doi.org/10.1109/TPS.2014.2365438

[23] Vysikaylo P.I. Long-range Coulomb potentials, classical and quantum E-membranes, focusing plasmoids (a review). Uspekhi prikladnoy fiziki [Advances in Applied Physics], 2015, vol. 3, no. 5, pp. 471--478 (in Russ.).

[24] Vysikaylo P.I., Glova A.F., Smakotin M.M. Stationary glow discharge in nitrogen with negative current-voltage characteristic. Fizika plazmy, 1988, vol. 14, no. 6, pp. 734--736 (in Russ.).

[25] Vysikaylo P.I. Detailed elaboration and general model of the electron treatment of surfaces of charged plasmoids: from atomic nuclei to white dwarves, neutron stars, and galactic cores. Part III. Behavior, variation, and synergetism of positively charged cumulative-dissipative plasma structures (+CDS) under external actions. Surf. Engin. Appl. Electrochem., 2013, vol. 49, no. 3, pp. 222--234. DOI: https://doi.org/10.3103/S1068375513030125

[26] Vysikaylo P.I. Detailed elaboration and general model of the electron treatment of surfaces of charged plasmoids (from atomic nuclei to white dwarves, neutron stars, and galactic cores). Self-condensation (self-constriction) and classification of charged plasma structures --- plasmoids. Part II. Analysis, classification, and analytic description of plasma structures observed in experiments and nature. The shock waves of electric fields in stars. Surf. Engin. Appl. Electrochem., 2012, vol. 48, no. 3, pp. 212--229. DOI: https://doi.org/10.3103/S106837551203012X

[27] Vysikaylo P.I. Leap in parameters of non-uniform collisional plasma with current conditioned by quasi-neutrality disruption. Fizika plazmy, 1985, vol. 11, no. 10, pp. 1256--1261 (in Russ.).

[28] Vysikaylo P.I., Tsendin L.D. Highly non-uniform profile of plasma concentration in discharge at elevated pressure. Fizika plazmy, 1986, vol. 12, no. 10, pp. 1206--1210 (in Russ.).

[29] Babichev V.N., Vysikaylo P.I., Pis’mennyy V.D., et al. Experimental investigation of the ambipolar drift of plasma disturbed by a fast electron beam. Dokl. AN SSSR. Fizika, 1987, vol. 297, no. 4, pp. 833--836 (in Russ.).

[30] Babichev V.N., Vysikaylo P.I., Golubev S.A. Experimental approval of parameters leap existence of gas-discharge plasma. Pis’ma v ZhTF, 1986, vol. 12, no. 16, pp. 992--995 (in Russ.).

[31] Vysikaylo P.I. Cumulative physics of crystals and plasmoids. Uspekhi prikladnoy fiziki [Advances in Applied Physics], 2015, vol. 3, no. 3, pp. 226--235 (in Russ.).

[32] Shklovskiy I.S. Fizika solnechnoy korony. Moscow, Fizmatgiz Publ., 1962.

[33] Huxley L.G., Crompton R.W. The diffusion and drift of electrons in gases. Wiley, 1974.

[34] Stoletov A.G. Actino-elektrical studies. Zhurnal Russkogo fiziko-khimicheskogo obshchestva. Chast’ fizicheskaya, 1889, vol. 21, no. 7-8, pp. 159--206 (in Russ.).