Neutron star: from the extreme turbulence of supernova outburst to the reference regularity of coherent pulsar radiation

Authors: Avramenko A.E. Published: 15.10.2015
Published in issue: #5(62)/2015  
DOI: 10.18698/1812-3368-2015-5-23-37

Category: Physics | Chapter: Theoretical Physics  
Keywords: neutron star, second pulsar, millisecond pulsar, coherence, braking index

Precise measurements of the second derivative of the rotation period according to the observed long-period second pulsars allow revealing a correlation between the period and the derivatives in a braking index n = 2 - PP''/P'2, which indicates a coherence of pulse radiation of a monotonous decelerating neutron star. The braking index value n = -(0,9 ± 0,2), which also extends to millisecond pulsars, allows making a conclusion about the coherence origin at the stage of a neutron star formation along with the stellar core collapse during the supernova outburst. Deceleration of a neutron star expressed by the derivatives of a rotation period at the epoch of the outburst is interpreted as the result of magnetic induction interaction between a supernova magnetic field and circum stellar electron-positron plasma through the open field lines. The paper discusses the magnetic induction braking mechanism of neutron stars. It presents a comparative analysis of the matched rotation parameters of the second and millisecond pulsars, which create two disjoint clusters during the neutron stars evolution.


[1] Moiseenko S.G., Bisnovatyi-Kogan G.S. Magnetorotational Supernovas and Magnetorotational Instability. Tr. 13-y Mezhdunar. astronomicheskoy shkoly-konf. [Proc. of the 13th International Astronomical School-Conference], Odessa, Ukraina, 2013, no. 26.

[2] Ardelyan N.V., Bisnovatyi-Kogan G.S., Moiseenko S.G. The Mechanisms of Supernova Explosions: Magnetorotational Model. Usp. Fiz. Nauk [Physics-Uspekhi], 1997, vol. 167, no. 10, pp. 1128-1131 (in Russ.).

[3] Beskin V.S. Radio Pulsars . Usp. Fiz. Nauk [Physics-Uspekhi], 1997, vol. 169, no. 11, pp. 1169-1198 (in Russ.).

[4] Malov I.F. Radiopul’sary [Radio Pulsars]. Moscow, Nauka Publ., 2004. 191 p.

[5] Bisnovatyi-Kogan G.S., Komberg B.V. Pulsars in Close Binary Systems. Astron. Zh. [Astron. Rep.], 1974, no. 51, p. 373 (in Russ.).

[6] Smith F.G. Pulsars. Cambridge Univ. Press, 1977.

[7] Avramenko A.E., Losovskiy B.Ya. Consistency of the Observed Parameters of Pulsar Rotations in the Secular Scale. Tr. Vseross. astrometricheskoy konf. "Pulkovo-2012". Izvestiya Glavnoy astronomicheskoy observatorii v Pulkove [Proc. of the All-Russ. Astrometric Conf. "Pulkovo-2012". News of the Main Astronomical Observatory at Pulkovo], 2013, no. 220, pp. 13-18 (in Russ.).

[8] Avramenko A.E. A Standard Measure of Space-Time Based on Periodic Emission of Pulsars. Izmeritel’naya tekhnika [Мeasurement Techniques], 2013, no. 2, pp. 18-24 (in Russ.).

[9] Lyne A.G., Graham-Smith F. Pulsar Astronomy. Cambridge Astrophys. Ser. Cambridge University, 2006, pp. 59-62.

[10] Hobbs G.B., Lyne G., Kramer M. An Analysis of the Timing Irregularities for 366 Pulsars. MNRAS, 2010, vol. 402, pp. 1027-1048.

[11] Bisnovatyi-Kogan G.S., Postnov K.A. Pulsar motion effect and Geminga’s high braking index. Nature, UK, 1993, vol. 366, p. 363.

[12] Manchester R.N., Hobbs G.B., Teoh A., Hobbs M. The ATNF Pulsar Catalogue. Astron. J., 2005, vol. 129, p. 1993.

[13] Taylor J.H., Manchester R.N., Lyne A.G. Catalog of 558 Pulsars. Astrophys. J. Suppl. Ser., 1993, vol. 88, pp. 529-568.

[14] Kaspi V.M., Taylor J.H., Ryba M.F. High-Precision Timing of Millisecond Pulsars. III. Long-term Monitoring of PSRs B1885+09 and B1937+21. Astrophys. J., 1994, vol. 428, pp. 713-728.

[15] Pacini F. Energy Emission from a Neutron Star. Nature., Lond., 1967, vol. 216, p. 567.