|

Simulating Thermal State of High-Temperature Ceramic Samples

Authors: Tovstonog V.A., Tomak V.I., Aliev Az.A., Burkov A.S. Published: 13.05.2021
Published in issue: #2(95)/2021  
DOI: 10.18698/1812-3368-2021-2-85-101

 
Category: Physics | Chapter: Thermal Physics and Theoretical Heat Engineering  
Keywords: aircraft, aerodynamic heating, high temperatures, refractory ceramics, thermal state, simulation

Developing high-velocity atmospheric aircraft equipped with ramjet engines, which use atmospheric air as the oxidizer, is an important component of aerospace technology prospects. These craft may be employed to quickly deliver payloads over intercontinental distances and as boosters for spacecraft injection into orbit. A characteristic feature of high-velocity atmospheric aircraft is a presence of sharp aerofoil edges subjected to highly oxidative airflow. This means that actual implementation of numerous hypersonic atmospheric aircraft projects largely depends on whether it is possible to develop materials that could remain stable in an oxidative atmosphere at temperatures of 2000--2500 °C. We estimated the thermal state of a structural component in the shape of a blunted wedge made out of promising refractory ceramics under flight conditions at an altitude of 22 km and a velocity of Mach 7

References

[1] Polezhaev Yu.V. Will there or will there not be a hypersonic airplane? J. Eng. Phys. Thermophys., 2000, vol. 73, no. 1, pp. 3--8. DOI: https://doi.org/10.1007/BF02681670

[2] Kobelev V.N., Milovanov A.G. Sredstva vyvedeniya kosmicheskikh apparatov [Aircraft launch vehicles]. Moscow, Restart Publ., 2009.

[3] Lobanovskiy Yu.I. Concept of an advanced reusable aerospace transportation system. Preprint TsAGI, 1994, no. 9 (in Russ.). Available at: http://synerjetics.ru/article/art1994.htm (accessed: 15.12.2020).

[4] Dmitriev V.G., ed. Problemy sozdaniya perspektivnoy aviatsionno-kosmicheskoy tekhniki [Design problems of advanced aerospace technique]. Moscow, FIZMATLIT Publ., 2005.

[5] Giperzvukovye udarnye sistemy novogo pokoleniya [New generation hypersonic shock systems] (in Russ.). Available at: https://army-news.ru/2013/03/giperzvukovye-udarnye-sistemy-novogo-pokoleniya (accessed: 15.12.2020).

[6] Svyatushenko V.V., Yagodnikov D.A. Comprehensive analysis of fuel efficiency for a ramjet-equipped spaceplane. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2020, no. 5 (134), pp. 19--40 (in Russ.). DOI: http://dx.doi.org/10.18698/0236-3941-2020-5-19-40

[7] Solozobov V., Slobodchikov A., Kazakov M., et al. Tupolev, hypersonic. Aviatsiya i kosmonavtika, 2009, no. 12, pp. 3--8 (in Russ.).

[8] Shcherbinin P. Razrabotka i letnye ispytaniya eksperimental’nykh GLA [Development and flight test of experimental hypersonic aircraft]. pentagonus.ru: website (in Russ.). Available at: http://pentagonus.ru/publ/16-1-0-286 (accessed: 15.12.2020).

[9] Kuchemann D. The aerodynamic design of aircraft. Oxford, 1978.

[10] Surzhikov S.T. Komp’yuternaya aerofizika spuskaemykh kosmicheskikh apparatov [Computer astrophysics of launched spacecraft]. Moscow, FIZMATLIT Publ., 2018.

[11] Zadonsky S.M., Kosykh A.P., Nersesov G.G., et al. Numerical and experimental investigation of aerodynamic characteristics of the hypersonic aircraft model of integrated configuration. TsAGI Sci. J., 2013, vol. 44, iss. 1, pp. 111--127. DOI: https://doi.org/10.1615/TsAGISciJ.2013007838

[12] Perspektivnye silovye ustanovki dlya vysokoskorostnykh letatel’nykh apparatov [Advanced power plants for high-speed aircraft]. testpilot.ru: website (in Russ.). Available at: http://testpilot.ru/review/hiper/hyper.htm (accessed: 15.12.2020).

[13] Kurziner R.I. Reaktivnye dvigateli dlya bol’shikh sverkhzvukovykh skorostey poleta [Jet engines for high supersonic speeds of flight]. Moscow, Mashinostroenie Publ., 1989.

[14] Semenov V.L., Kleyankin G.A., Dudareva N.N., et al. Eksperimental’nyy giperzvukovoy pryamotochnyy vozdushno-reaktivnyy dvigatel’ [Experimental hypersonic ramjet engine]. Patent RU 2238420. Appl. 18.02.2003, publ. 20.10.2004 (in Russ.).

[15] Shevalye F., Bushe M. Pryamotochnyy vozdushno-reaktivnyy dvigatel’ dlya letatel’nogo apparata [Aircraft turboramjet engine]. Patent Ru 2125172. Appl. 28.02.1997, publ. 20.01.1999 (in Russ.).

[16] Shevalye A., Bushe M., Levin B., et al. Pryamotochnyy vozdushno-reaktivnyy dvigatel’ dlya letatel’nogo apparata so sverkhzvukovoy i/ili giperzvukovoy skorost’yu poleta [Turboramjet engine for supersonic or hypersonic aircraft]. Patent RF 2121592. Appl. 11.07.1996, Publ. 27.12.1998 (in Russ.).

[17] Galankin E.M., Semenov V.L., Serebryakov D.I. Dvigatel’naya ustanovka dlya giperzvukovogo letatel’nogo apparata [Power plant for hypersonic aircraft]. Patent RU 2287076. Appl. 24.02.2005, publ. 10.11.2006 (in Russ.).

[18] Surzhikov S.T. Raschetnoe issledovanie aerotermodinamiki giperzvukovogo obtekaniya zatuplennykh tel na primere analiza eksperimental’nykh dannykh [Computational study on aerithermodynamics of hypersonic blunt-body flotation at the example of experimantal data analysis]. Moscow, IPMech RAS Publ., 2011.

[19] Krayko A.N., ed. Gazovaya dinamika. Izbrannoe. T. 1 [Gas dynamics. Selected works. Vol. 1]. Moscow, FIZMATLIT Publ., 2005.

[20] Zheleznyakova A.L., Surzhikov S.T. Na puti k sozdaniyu modeli virtual’nogo GLA [On the way to making model of virtual hypersonic aircraft]. Moscow, IPMech RAS Publ., 2013.

[21] Hayes W.D., Probstein R.F. Hypersonic flow theory. Academic Press, 1959.

[22] Davydova N.A., Yushun A.Ya. Experimental study on heat transfer of flat triangular wings with blunt edges. Uchenye zapiski TsAGI, 1970, vol. 1, no. 6, pp. 117--125 (in Russ.).

[23] Baula G.G., Krasnokutskaya A.N., Plastinin Yu.A., et al. Analysis of hypersonic apparatus characteristics of its test trials. Kosmonavtika i raketostroenie [Cosmonautics and Rocket Engineering], 2014, no. 6, pp. 42--48 (in Russ.).

[24] Marmer E.N., Gurvich O.S., Maltseva L.F. Vysokotemperaturnye materialy [High temperature materials]. Moscow, Metallurgiya Publ., 1967.

[25] Samsonov G.V., Vinitskiy I.M. Tugoplavkie soedineniya [High-melting compounds]. Moscow, Metallurgiya Publ., 1976.

[26] Sorokin O.Yu., Grashchenkov D.V., Solntsev S.S., et al. Ceramic composite materials with high oxidation resistance for the novel aircrafts (review). Trudy VIAM [Proceedings of VIAM], 2014, no. 6 (in Russ.). DOI: https://dx.doi.org/10.18577/2307-6046-2014-0-6-8-8

[27] Poluboyarinov D.N., Popilskiy R.Ya., eds. Keramika iz vysokoogneupornykh okislov [Ceramics from superrefractory oxides]. Moscow, Metallurgiya Publ., 1977.

[28] Mikheev S.V., Stroganov G.B., Romashin A.G. Keramicheskie i kompozitsionnye materialy v aviatsionnoy tekhnike [Ceramics and composites in aircraft]. Moscow, Al’teks Publ., 2002.

[29] Rutman D.S., Toropov Yu.S., Pliner S.Yu., et al. Vysokoogneupornye materialy iz dioksida tsirkoniya [Superrefractory materials based on zirconium dioxide]. Moscow, Metallurgiya Publ., 1985.

[30] Ermolenko I.N., Ulyanova T.M., Vityaz P.A., et al. Voloknistye vysokotemperaturnye keramicheskie materialy [High-temperature fibre ceramics]. Minsk, Navuka i tekhnika Publ., 1991.

[31] Sokolov P.S., Arakcheev A.V., Mikhalchik I.L., et al. Ultra-high temperature HfB2-30 % SiC ceramics: preparation and general properties. Novye ogneupory [New Refractories], 2017, no. 5, pp. 48--55 (in Russ.). DOI: https://doi.org/10.17073/1683-4518-2017-5-48-55

[32] Pryamilova E.N., Poylov V.Z., Lyamin Yu.B. Thermochemical stability of the ceramics based on zirconium and hafnium borides. Vestnik PNIPU. Khimicheskaya tekhnologiya i biotekhnologiya [PNRPU Bulletin. Chemical Technology and Biotechnology], 2014, no. 4, pp. 55--67 (in Russ.).

[33] Sevast’yanov V.G., Simonenko E.P., Gordeev A.N., et al. Production of ultrahigh temperature composite materials HfB2--SiC and the study of their behavior under the action of a dissociated air flow. Russ. J. Inorg. Chem., 2013, vol. 58, no. 11, pp. 1269--1276. DOI: https://doi.org/10.1134/S003602361311017X

[34] Sevastyanov V.G., Simonenko E.P., Gordeev A.N., et al. HfB2--SiC (45 vol %) ceramic material: manufacture and behavior under long-term exposure to dissociated air jet flow. Russ. J. Inorg. Chem., 2014, vol. 59, no. 11, pp. 1298--1311. DOI: https://doi.org/10.1134/S0036023614110217

[35] Kotov M.A., Ruleva L.B., Solodovnikov S.I., et al. Computational and experimental research of the high-speed gas flow structure near aircraft fragments models. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2017, no. 3 (114), pp. 18--30 (in Russ.). DOI: http://dx.doi.org/10.18698/0236-3941-2017-3-18-30

[36] Abramovich B.G., Goldshteyn V.L. Intensifikatsiya teploobmena izlucheniem s pomoshch’yu pokrytiy [Heat exchange intensiification by radiation using coatings]. Moscow, Energiya Publ., 1977.

[37] Polezhaev Yu.V., Shishkov A.A. Gazodinamicheskie ispytaniya teplovoy zashchity [Gasdynamics tests of thermal protection]. Moscow, Promedek Publ., 1992.

[38] Mikhatulin D.S., Polezhaev Yu.V., Reviznikov D.L. Teplomassoobmen, termokhimicheskoe i termoerozionnoe razrushenie teplovoy zashchity [Heat and mass exchange, thermochemical and thermoerosional destruction of thermal protection]. Moscow, Yanus-K Publ., 2011.

[39] Gorskiy V.V. Teoreticheskie osnovy rascheta ablyatsionnoy teplovoy zashchity [Theoretical basis of calculating ablative heat protection]. Moscow, Nauchnyy mir Publ., 2015.

[40] Gorskiy V.V., Kovalsky M.G., Resh V.G. Method of calculating carbon ablation in the jet of liquid rocket engine combustion products. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2019, no. 5 (128), pp. 4--21 (in Russ.). DOI: http://dx.doi.org/10.18698/0236-3941-2019-5-4-21

[41] Kolesnikov A.F. Local similarity conditions of the thermochemical interaction between high-enthalpy gas flows and an indestructible surface. High. Temp., 2014, vol. 52, no. 1, pp. 110--116. DOI: https://doi.org/10.1134/S0018151X13060151