﻿ Mathematical and Physical Simulation of the Cross-Flow Velocity Pulsation Effect on the Flame Structure during the Diffusion Mode of Methane Combustion | Herald of the Bauman Moscow State Technical University. Natural Sciences
|

# Mathematical and Physical Simulation of the Cross-Flow Velocity Pulsation Effect on the Flame Structure during the Diffusion Mode of Methane Combustion

 Authors: Arefyev K.Yu., Fedotova K.V., Krikunova A.I., Panov V.A. Published: 26.04.2020 Published in issue: #2(89)/2020 DOI: 10.18698/1812-3368-2020-2-65-84 Category: Physics | Chapter: Thermal Physics and Theoretical Heat Engineering Keywords: flame structure, diffusion flame, methane combustion, cross-flow, acoustic impact, flamelet model, eddy dissipation concept model

The paper presents the results of calculation and experimental studies of the diffusion combustion of methane in the air cross-flow. We developed a mathematical model for describing a diffusion air-methane flame, the model being based on solving a system of averaged Navier --- Stokes equations in an unsteady setting. To calculate the combustion processes, we used the flamelet models and eddy dissipation concept (EDC) model. The mathematical model was supplemented by a detailed kinetic mechanism consisting of 325 elementary reactions involving 53 substances. Furthermore, we carried out calculations and comparative analysis of the flame characteristics using various turbulence models: k − ε, k − ω SST and Transition SST. The study introduces a diagram of the experimental setup for physical modeling of methane combustion in the air cross-flow, and presents the results of the calculation and experimental study of the cross-flow velocity pulsation effect on the flame structure, as well as the efficiency of methane combustion in the diffusion mode. We obtained data on temperature and concentration fields at pulsation frequencies of 0--100 Hz. Findings of research show that for the case under consideration, stable combustion occurs at pulsation frequencies of 0--90 Hz. The maximum observed flame lift-off is 3.2 times the diameter of the burner nozzle

This work was supported by the grant from the Russian Science Foundation (no. RSF 17-79-10503)

## References

[1] Zabaykin V.A., Tret’yakov P.K., Vorontsov S.S., et al. Dynamics of mixing and burning of hydrogen in supersonic air flow. Khimicheskaya fizika, 2005, vol. 24, no. 5, pp. 81--86 (in Russ.).

[2] Annushkin Yu.M. Basic rules governing the burning of turbulent jets of hydrogen in air channels. Combust. Explos. Shock Waves, 1981, vol. 17, iss. 4, pp 400--411. DOI: https://doi.org/10.1007/BF00761209

[3] Aleksandrov V.Yu., Kukshinov N.V. Modified combustion efficiency curve for high-velocity model combustors integrated with the inlet. Combust. Explos. Shock Waves, 2016, vol. 52, iss. 3, pp. 281--285. DOI: https://doi.org/10.1134/S0010508216030047

[4] Degtyar’ V.G., Son E.E. Giperzvukovye letatel’nye apparaty. T. 1 [Hypersonic aircraft. Vol. 1]. Moscow, Yanus-K Publ., 2016.

[5] Trevisan B.P., Dourado W.M.C. Experimental investigation of the acoustic flame interactions in a Bunsen burner. Workshop em Engenharia e Tecnologia Espacials, 2013.

[6] Aleksandrov V.Yu., Arefyev K.Yu., Ilchenko M.A. Experimental investigation of acoustic self-oscillation influence on decay process for underexpanded supersonic jet in submerged space. Thermophys. Aeromech., 2016, vol. 23, iss. 4, pp. 513--521. DOI: https://doi.org/10.1134/S0869864316040041

[7] Bourehla A., Baillot F. Appearance and stability of a laminar conical premixed flame subjected to an acoustic perturbation. Combust. Flame, 1998, vol. 114, iss. 3-4, pp. 303--318. DOI: https://doi.org/10.1016/S0010-2180(97)00323-4

[8] Arefyev K.Yu., Ilchenko M.A. The determination of the flow acoustic characteristics in a duct with variable cross-section of a laboratory unit. Proceedings of Higher Educational Institutions. Маchine Building, 2018, no. 9, pp. 74--81 (in Russ.). DOI: http://doi.org/10.18698/0536-1044-2018-9-74-81

[9] Di Sabatino F., Guiberti Th.F., Boyette W.R., et al. Effect of pressure on the transfer functions of premixed methane and propane swirl flames. Combust. Flame, 2018, vol. 193, pp. 272--282. DOI: https://doi.org/10.1016/j.combustflame.2018.03.011

[10] Luciano E., Ballester J. Analysis of the dynamic response of premixed flames through chemiluminescence cross-correlation maps. Combust. Flame, 2018, vol. 194, pp. 296--308. DOI: https://doi.org/10.1016/j.combustflame.2018.05.005

[11] Shtykov R.A. A formation process of a circular turbulent jet of natural and iquefied gases in a diffusional flare. Nadezhnost’ i kachestvo slozhnykh system [Reliability & Quality of Complex Systems], 2017, no. 4, pp. 85--89 (in Russ.). DOI: https://doi.org/10.21685/2307-4205-2017-4-11

[12] Evdokimov O.A., Guryanov A.I. Experimental study of free-convection flame propagation. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie [Vestnik of Samara University. Aerospace and Mechanical Engineering], 2015, no. 1, pp. 139--146 (in Russ.).

[13] Krivokorytov M.S., Golub V.V., Volodin V.V. Effect of acoustic vibrations on diffusion combustion of methane. Pis’ma v ZhTF, 2012, vol. 38, no. 10, pp. 57--63 (in Russ.).

[14] Litvinenko M.V., Litvinenko Yu.A., Vikhorev V.V., et al. Influence of acoustic fluctuations on the round jet, formed in curved channel. Vestnik NGU. Seriya: Fizika [Vestnik NSU. Series: Physics], 2015, vol. 10, no. 2, pp. 67--72 (in Russ.).

[15] Williams T.C., Shaddix Ch.R., Schefer R.W., et al. The response of buoyant laminar diffusion flames to low-frequency forcing. Combust. Flame, 2007, vol. 151, iss. 4, pp. 676--684. DOI: https://doi.org/10.1016/j.combustflame.2007.07.023

[16] Krivokorytov M.S., Golub V.V., Moralev I.A., et al. Experimental study of the development of a helium jet during acoustic action. High Temp., 2014, vol. 52, iss. 3, pp. 436--440. DOI: https://doi.org/10.1134/S0018151X14030171

[17] Launder B.E., Sharma B.I. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Tran., 1974, vol. 1, iss. 2, pp. 131--137. DOI: https://doi.org/10.1016/0094-4548(74)90150-7

[18] Menter F.R. Zonal two equation k -- w turbulence models for aerodynamic flows. Proc. 24th Fluid Dynamics Conf., 1993, pp. 1993--2906. DOI: https://doi.org/10.2514/6.1993-2906

[19] Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, vol. 32, no. 8, pp. 1598--1605. DOI: https://doi.org/10.2514/3.12149

[20] Smith G.P., Golden D.M., Frenklach M., et. al. GRI-MECH 3.0. URL: http://combustion.berkeley.edu/gri-mech/version30/text30.html (дата обращения: 16.02.2020).

[21] Kuo K.K., Acharya R. Fundamentals of turbulent and multiphase combustion. Wiley, 2012.

[22] Yun A.A. Teoriya i praktika modelirovaniya turbulentnykh techeniy [Theory and practice of turbulent flow simulation]. Moscow, Librokom Publ., 2009.

[23] Zheng Y., Barlow R.S., Gore J.P. Measurements and calculations of mean spectral radiation intensities leaving turbulent non-premixed and partially premixed flames. J. Heat Transfer, 2003, vol. 125, iss. 4, pp. 678--686. DOI: https://doi.org/10.1115/1.1589502

[24] Arefyev K.Yu., Krikunova A.I., Panov V.A. Experimental study of premixed methane-air flame coupled with an external acoustic field. J. Phys.: Conf. Ser., 2019, vol. 1147, art. 012050. DOI: https://doi.org/10.1088/1742-6596/1147/1/012050