|

Evaluating Possibilities of the Modern Chemical Kinetic Mechanisms of Acetylene Oxidation in Simulating the Non-Stationary Combustion Processes

Authors: Yakovenko I.S., Yarkov A.V., Turnin A.V., Tereza A.M., Novitski A.O., Krivosheyev P.N. Published: 01.11.2022
Published in issue: #5(104)/2022  
DOI: 10.18698/1812-3368-2022-5-62-85

 
Category: Physics | Chapter: Thermal Physics and Theoretical Heat Engineering  
Keywords: combustion, acetylene, kinetic mechanism, ignition delay time, normal combustion rate, numerical simulation, non-stationary combustion

Abstract

Acetylene is characterized by high reactivity and appears to be one of the promising gas fuels. However, possible combustion regimes of such fuels require a comprehensive study to be widely introduced in practice. This work is devoted to analyzing the modern kinetic mechanisms of acetylene oxidation. Current approaches to numerical analysis of the gas-dynamic flows in chemically active gas mixtures are a powerful tool in solving many industrial and energy problems. Obtaining positive results of numerical simulation of the non-stationary combustion and detonation processes is impossible without the use of reliable and efficient kinetic mechanisms. Kinetic mechanisms were considered describing the acetylene oxidation. Eight most optimal mechanisms were studied to identify the possibility of their implementation in detailed simulation of the non-stationary combustion processes, in particular, in flame acceleration and transition to detonation. Ignition delay time and laminar burning velocity were calculated using a complete model of the reacting medium gas dynamics. To evaluate correctness of the ignition and combustion parameters obtained values, they were compared with the available experimental data. Based on the obtained results analysis, conclusions were made on the possibility of applying the kinetic mechanisms under consideration, taking into account the combustion parameters accuracy and the computational efficiency

The work was supported by the Russian Foundation for Basic Research (grant no. 20-58-04024) and the Belarusian Republican Foundation for Basic Research (grant no. T21PM-103)

Please cite this article in English as:

Yakovenko I.S., Yarkov A.V., Turnin A.V., et al. Evaluating possibilities of the modern chemical kinetic mechanisms of acetylene oxidation in simulating the non-stationary combustion processes. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2022, no. 5 (104), pp. 62--85 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2022-5-62-85

References

[1] Lakshmanan T., Nagarajan G. Study on using acetylene in dual fuel mode with exhaust gas recirculation. Energy, 2011, vol. 36, iss. 5, pp. 3547--3553. DOI: https://doi.org/10.1016/j.energy.2011.03.061

[2] Sharma S., Sharma D., Soni S.L., et al. Performance, combustion and emission analysis of internal combustion engines fuelled with acetylene --- a review. Int. J. Ambient. Energy, 2022, vol. 43, iss. 1, pp. 622--640. DOI: https://doi.org/10.1080/01430750.2019.1663369

[3] Zhang B., Pang L., Shen X., et al. Measurement and prediction of detonation cell size in binary fuel blends of methane/hydrogen mixtures. Fuel, 2016, vol. 172, pp. 196--199. DOI: https://doi.org/10.1016/j.fuel.2016.01.034

[4] Lemkowitz S.M., Pasman H.J. A review of the fire and explosion hazards of particulates. Kona, 2014, vol. 31, pp. 53--81. DOI: https://doi.org/10.14356/kona.2014010

[5] Krivosheyev P., Penyazkov O., Sakalou A. Analysis of the final stage of flame acceleration and the onset of detonation in a cylindrical tube using high-speed stereoscopic imaging. Combust. Flame, 2020, vol. 216, pp. 146--160. DOI: https://doi.org/10.1016/j.combustflame.2020.02.027

[6] Soloukhin R.I. Deflagration-to-detonation transition in gases. Prikladnaya mekhanika i tekhnicheskaya fizika, 1961, no. 4, pp. 128--132 (in Russ.).

[7] Soloukhin R.I. Udarnye volny i detonatsiya v gazakh [Shock waves and detonation in gases]. Moscow, FIZMATGIZ Publ., 1963.

[8] Khokhlov A.M., Oran E.S., Thomas G.O. Numerical simulation of deflagration-to-detonation transition: the role of shock--flame interactions in turbulent flames. Combust. Flame, 1999, vol. 117, iss. 1-2, pp. 323--339. DOI: https://doi.org/10.1016/S0010-2180(98)00076-5

[9] Smirnov N.N., Betelin V.B., Nikitin V.F., et al. Detonation engine fed by acetylene-oxygen mixture. Acta Astronaut., 2014, vol. 104, iss. 1, pp. 134--146. DOI: https://doi.org/10.1016/j.actaastro.2014.07.019

[10] Arefyev K.Yu., Fedotova K.V., Krikunova A.I., et al. Mathematical and physical simulation of the cross-flow velocity pulsation effect on the flame structure during the diffusion mode of methane combustion. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2020, no. 2 (89), pp. 65--84 (in Russ.). DOI: http://dx.doi.org/10.18698/1812-3368-2020-2-65-84

[11] Ivanov M.F., Kiverin A.D., Yakovenko I.S. Gas-dynamic processes influence on combustion evolution close to concentration flammability limits. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, no. 6 (62), pp. 85--98 (in Russ.). DOI: http://dx.doi.org/10.18698/1812-3368-2015-6-85-98

[12] Ivanov M.F., Kiverin A.D., Pinevich S.G. Abnormal propagation of flame in combustible gas suspensions. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2015 (63), no. 5, pp. 51--68 (in Russ.). DOI: http://dx.doi.org/10.18698/1812-3368-2015-5-51-68

[13] Ivanov M.F., Kiverin A.D., Rykov Yu.V. Peculiarities of flame propagation in closed volumes. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2010, no. 1 (36), pp. 21--39 (in Russ.).

[14] Dounia O., Vermorel O., Misdariis A., et al. Influence of kinetics on DDT simulations. Combust. Flame, 2019, vol. 200, pp. 1--14. DOI: https://doi.org/10.1016/j.combustflame.2018.11.009

[15] Liberman M.A., Kiverin A.D., Ivanov M.F. Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models. Phys. Rev. E, 2012, vol. 85, iss. 5, art. 05631. DOI: https://doi.org/10.1103/physreve.85.056312

[16] Warnatz J., Maas U., Dibble R.W. Combustion. Physical and chemical fundamentals, modelling and simulation, experiments, pollutant formation. Berlin, Heidelberg, Springer, 2001. DOI: https://doi.org/10.1007/978-3-540-45363-5

[17] Turanyi T., Tomlin A.S. Analysis of kinetic reaction mechanisms. Berlin, Heidelberg, Springer, 2014. DOI: https://doi.org/10.1007/978-3-662-44562-4

[18] Westbrook C.K., Dryer F.L. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol., 1981, vol. 27, iss. 1-2, pp. 31--43. DOI: https://doi.org/10.1080/00102208108946970

[19] Mauss F., Lindstedt R.P. Reduced kinetic mechanisms for premixed acetylene-air flames. In: Peters N., Rogg B. (eds). Reduced Kinetic Mechanisms for Applications in Combustion Systems. Lecture Notes in Physics Monographs, vol. 15. Berlin, Heidelberg, Springer, 1993, pp. 102--122. DOI: https://doi.org/10.1007/978-3-540-47543-9_7

[20] Jones W.P., Lindstedt R.P. Global reaction schemes for hydrocarbon combustion. Combust. Flame, 1988, vol. 73, iss. 3, pp. 233--249. DOI: https://doi.org/10.1016/0010-2180(88)90021-1

[21] Metcalfe W.K., Burke S.M., Ahmed S.S., et al. A hierarchical and comparative kinetic modeling study of C1--C2 hydrocarbon and oxygenated fuels. Int. J. Chem. Kinet., 2013, vol. 45, iss. 10, pp. 638--675. DOI: http://dx.doi.org/10.1002/kin.20802

[22] Alekseev V.A., Bystrov N., Emelianov A., et al. High-temperature oxidation of acetylene by N2O at high Ar dilution conditions and in laminar premixed C2H2+O2+N2 flames. Combust. Flame, 2022, vol. 238, art. 111924. DOI: https://doi.org/10.1016/j.combustflame.2021.111924

[23] Porras S., Kaczmarek D., Herzler J., et al. An experimental and modeling study on the reactivity of extremely fuel-rich methane/dimethyl ether mixtures. Combust. Flame, 2020, vol. 212, pp. 107--122. DOI: https://doi.org/10.1016/j.combustflame.2019.09.036

[24] Smith G.P., Golden D.M., Frenklach M., et al. GRI-Mech 3.0. Available at: http://combustion.berkeley.edu/gri-mech (accessed: 02.09.2022).

[25] Smith G.P., Tao Y., Wang H. Foundational Fuel Chemistry Model Version 1.0 (FFCM-1). Available at: https://web.stanford.edu/group/haiwanglab/FFCM1/pages/download.html (accessed: 02.09.2022).

[26] The San Diego mechanism. Chemical-kinetic mechanisms for combustion applications. web.eng.ucsd.edu: web site. Available at: https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html (accessed: 15.05.2022).

[27] Slavinskaya N., Mirzayeva A., Whitside R., et. al. A modelling study of acetylene oxidation and pyrolysis. Combust. Flame, 2019, vol. 210, pp. 25--42. DOI: https://doi.org/10.1016/j.combustflame.2019.08.024

[28] Shen X., Yang X., Santner J., et al. Experimental and kinetic studies of acetylene flames at elevated pressures. Proc. Combust. Inst., 2015, vol. 35, iss. 1, pp. 721--728. DOI: https://doi.org/10.1016/j.proci.2014.05.106

[29] Wang H., Laskin A.A. A comprehensive reaction model of ethylene and acetylene combustion. Available at: http://ignis.usc.edu/Mechanisms/C2-C4/c2.html (accessed: 15.08.2022).

[30] Miller J.A., Mitchell R.E., Smooke M.D., et al. Toward a comprehensive chemical kinetic mechanism for the oxidation of acetylene: comparison of model predictions with results from flame and shock tube experiments. Symp. Combust., 1982, vol. 19, iss. 1, pp. 181--196. DOI: https://doi.org/10.1016/S0082-0784(82)80189-6

[31] Varatharajan B.N., Williams F.A. Chemical-kinetic descriptions of high-temperature ignition and detonation of acetylene-oxygen-diluent systems. Combust. Flame, 2001, vol. 124, iss. 4, pp. 624--645. DOI: https://doi.org/10.1016/S0010-2180(00)00235-2

[32] Tereza A.M., Medvedev S.P., Smirnov V.N. Experimental study and numerical simulation of chemiluminescence emission during the self-ignition of hydrocarbon fuels. Acta Astronaut., 2019, vol. 163, part A, pp. 18--24. DOI: https://doi.org/10.1016/j.actaastro.2019.03.001

[33] Tereza A.M., Agafonov G.L., Betev A.S., et al. Reduction of the detailed kinetic mechanism for efficient simulation of ignition delay for mixtures of methane and acetylene with oxygen. Russ. J. Phys. Chem. B, 2020, vol. 14, no. 6, pp. 951--958. DOI: https://doi.org/10.1134/S1990793120060299

[34] Numerical reactive gas-dynamics software package. github.com: веб-сайт. Available at: https://github.com/yakovenko-ivan/NRG (accessed: 15.08.2022).

[35] McGrattan K., McDermott R., Weinschenk C., et al. Fire dynamics simulator, technical reference guide. National Institute of Standards and Technology, Special Publication 1018-1, 2013.

[36] McBridge B.J., Gordon S., Reno M.A. Coefficients for calculating thermodynamic and transport properties of individual species. NASA-TM-4513. NASA, 1993.

[37] Kee R.J., Rupley F.M., Miller J.A., et al. CHEMKIN: a software package for the analysis of gas-phase chemical and plasma kinetic. Release 3.6. San Diego, Reaction Design, 2000.

[38] Bykov V., Kiverin A., Koksharov A., et al. Analysis of transient combustion with the use of contemporary CFD techniques. Comput. Fluids, 2019, vol. 194, art. 104310. DOI: https://doi.org/10.1016/j.compfluid.2019.104310

[39] Ivanov M.F., Kiverin A.D., Yakovenko I.S., et al. Hydrogen-oxygen flame acceleration and deflagration-to-detonation transition in three-dimensional rectangular channels with no-slip walls. Int. J. Hydrog. Energy, 2013, vol. 38, iss. 36, pp. 16427--16440. DOI: https://doi.org/10.1016/j.ijhydene.2013.08.124

[40] Kiverin A.D., Yakovenko I.S., Ivanov M.F. On the structure and stability of supersonic hydrogen flames in channels. Int. J. Hydrog. Energy, 2016, vol. 41, iss. 47, pp. 22465--22478. DOI: https://doi.org/10.1016/j.ijhydene.2016.10.007

[41] Edwards D.H., Thomas G.O., Williams T.L. Initiation of detonation by steady planar incident shock waves. Combust. Flame, 1981, vol. 43, pp. 187--198. DOI: https://doi.org/10.1016/0010-2180(81)90016-X

[42] Hidaka Y., Hattori K., Okuno T., et. al. Shock-tube and modeling study of acetylene pyrolysis and oxidation. Combust. Flame, 1996, vol. 107, no. 4, pp. 401--417. DOI: https://doi.org/10.1016/S0010-2180(96)00094-6

[43] Homer J.B., Kistiakowsky G.B. Oxidation and pyrolysis of ethylene in shock waves. J. Chem. Phys., 1967, vol. 47, iss. 12, art. 5290. DOI: https://doi.org/10.1063/1.1701792

[44] Kiverin A.D., Yakovenko I.S. Estimation of critical conditions for deflagration-to-detonation transition in obstructed channels filled with gaseous mixtures. Math. Model. Nat. Phenom., 2018, vol. 13, no. 6, art. 54. DOI: https://doi.org/10.1051/mmnp/2018071

[45] Zeldovich Ya.B., Barenblatt G.I., Librovich V.B., et al. Matematicheskaya teoriya goreniya i vzryva [Mathematical theory of combustion and explosion]. Moscow, Nauka Publ., 1980.

[46] Rokni E., Moghaddas A., Askari O., et. al. Measurement of laminar burning speeds and investigation of flame stability of Acetylene (C2H2)/air mixtures. J. Energy Resour. Technol., 2015, vol. 137, iss. 1, art. 012204. DOI: https://doi.org/10.1115/1.4028363

[47] Ravi S., Sikes T.G., Morones A., et al. Comparative study on the laminar flame speed enhancement of methane with ethane and ethylene addition. Proc. Combust. Inst., 2015, vol. 35, iss. 1, pp. 679--686. DOI: https://doi.org/10.1016/j.proci.2014.05.130

[48] Egolfopoulos F.N., Zhu D.L., Law C.K. Experimental and numerical determination of laminar flame speeds: mixtures of C2-hydrocarbons with oxygen and nitrogen. Symp. Combust., 1991, vol. 23, iss. 1, pp. 471--478. DOI: https://doi.org/10.1016/S0082-0784(06)80293-6

[49] Jomaas G., Zheng X.L., Zhu D.L., et al. Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2--C3 hydrocarbons at atmospheric and elevated pressures. Proc. Combust. Inst., 2005, vol. 30, iss. 1, pp. 193--200. DOI: https://doi.org/10.1016/j.proci.2004.08.228

[50] Lokachari N., Burke U., Ramalingam A., et. al. New experimental insights into acetylene oxidation through novel ignition delay times, laminar burning velocities and chemical kinetic modeling. Proc. Combust. Inst., 2019, vol. 37, iss. 1, pp. 583--591. DOI: https://doi.org/10.1016/j.proci.2018.07.027

[51] Kuznetsov N.M. Kinetika monomolekulyarnykh reaktsiy [Kinetics of monomo-lecular reactions]. Moscow, Nauka Publ., 1982.