|

Simulation of the Scattering Process Effect on High-Temperature Jet Radiation Intensity by the Monte Carlo Method

Authors: Grigorev I.S. Published: 17.10.2020
Published in issue: #5(92)/2020  
DOI: 10.18698/1812-3368-2020-5-28-43

 
Category: Physics | Chapter: Optics  
Keywords: scattering, ray tracing, jet, radiation intensity, massively parallel computing, CUDA, aircraft, Monte Carlo method

The purpose of the paper was to study the scattering effect in the gas jet model on the angular dependence of the radiation intensity. Along with the Monte Carlo method used as the main calculation method, we applied a direct numerical solution of the equation of radiation transfer in a non-scattering medium, known as the discrete directions method, or Ray-Tracing Method. We compared the results obtained using the two methods when calculating a non-scattering medium in order to verify the solution according to the Monte Carlo scheme. Furthermore, we calculated the medium with an increasing value of the local scattering coefficient. Findings of research show the significant effect of scattering processes on the redistribution of radiation energy from the surface of the object. The computational algorithm is implemented on the CUDA C architecture. The use of analytical jet models, e.g. according to Abramovich's theory, and the results of calculations in the computational gas dynamics packages makes it possible to calculate the values of the radiation intensity for a wide class of objects

References

[1] Tesse L., Lamet J.-M. Radiative transfer modelling developed at Onera for numerical simulations of reactive flows. Aerospace Lab, 2011, iss. 2. Available at: https://aerospacelab.onera.fr/Radiative-Transfer-Modeling-Developed%20

[2] Farmer J.T., Howell J.R. Comparison of Monte Carlo strategies for radiative transfer in participating media. Adv. Heat Transfer, 1998, vol. 31, pp. 333--429. DOI: https://doi.org/10.1016/S0065-2717(08)70243-0

[3] Modest M.F. Radiative heat transfer. Academic Press, 2003.

[4] Tesse L., Dupoireux F., Zamuneret B., et al. Radiative transfer in real gases using reciprocal and forward Monte Carlo methods and a correlated-k approach. Int. J. Heat Mass Transf., 2002, vol. 45, iss. 13, pp. 2797--2814. DOI: https://doi.org/10.1016/S0017-9310(02)00009-1

[5] Surzhikov S.T. Teplovoe izluchenie gazov i plazmy [Thermal radiation of gases and plasma]. Moscow, BMSTU Publ., 2004.

[6] Binauld Q., Lamet J.-M., Tesse L., et al. Numerical simulations of radiation in high altitude solid propellant rocket plumes. Acta Astronaut., 2019, vol. 158, pp. 351--360. DOI: https://doi.org/10.1016/j.actaastro.2018.05.041

[7] Farbar E., Boyd I.D., Moghadam-Esmaily M. Monte Carlo modeling of radiative heat transfer in particle-laden flow. J. Quant. Spectrosc. Radiat. Transf., 2016, vol. 184, pp. 146--160. DOI: https://doi.org/10.1016/j.jqsrt.2016.07.007

[8] Bonin J., Mundt C. Full three-dimensional Monte Carlo radiative transport for hypersonic entry vehicles. J. Spacecr. Rockets, 2019, vol. 56, iss. 1. DOI: https://doi.org/10.2514/1.A34179

[9] Scoggins J.B., Lani A., Riviere Ph., et al. 3D radiative heat transfer calculations using Monte Carlo ray tracing and the hybrid statistical narrow band model for hypersonic vehicles. 47th AIAA Thermophysics Conf., 2017. DOI: https://doi.org/10.2514/6.2017-4536

[10] Rothman L.S., Gordon I.E., Barbe A., et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf., 2009, vol. 110, iss. 9-10, pp. 533--572. DOI: https://doi.org/10.1016/j.jqsrt.2009.02.013

[11] Surzhikov S.T. Three-dimensional model of the spectral emissivity of light-scattering exhaust plumes. High Temp., 2004, vol. 42, no. 5, pp. 763--775. DOI: https://doi.org/10.1023/B:HITE.0000046675.90866.a0

[12] Wang W., Li S., Zhang Q., et al. Infrared radiation signature of exhaust plume from solid propellants of different energy characteristics. Chinese J. Aeronaut., vol. 26, iss. 3, pp. 594--600. DOI: https://doi.org/10.1016/j.cja.2013.04.019

[13] Soufiani A., Taine J. High temperature gas radiative properties of statistical narrow-band model for H2O, CO2 and CO, and correlated-K model for H2O and CO2. Int. J. Heat Mass Transf., 1997, vol. 40, iss. 4, pp. 987--991. DOI: https://doi.org/10.1016/0017-9310(96)00129-9

[14] Lamet J., Riviére Ph., Perrin M., et al. Narrow-band model for nonequilibrium air plasma radiation. J. Quant. Spectrosc. Radiat. Transf., 2010, vol. 111, iss. 1, pp. 87--104. DOI: https://doi.org/10.1016/j.jqsrt.2009.07.010

[15] Niu Q., He Z., Dong S. IR radiation characteristics of rocket exhaust plumes under varying motor operating conditions. Chinese J. Aeronaut., 2017, vol. 30, iss. 3, pp. 1101--1114. DOI: https://doi.org/10.1016/j.cja.2017.04.003