|

A Theoretical Study of Light Soliton Produced by Semiconductor Quantum Dot Waveguides and Propagation in Optical Fibers

Authors: Swami O.P., Kumar V., Suthar B., Nagar A.K. Published: 12.09.2019
Published in issue: #4(85)/2019  
DOI: 10.18698/1812-3368-2019-4-89-102

 
Category: Physics | Chapter: Optics  
Keywords: nonlinear optics, optical solitons, nonlinear guided waves, Quantum Dots

In this paper, the propagation of light soliton is studied in nonlinear optical fiber. We propose the external excitation of SQD waveguides through an optical source that allows the generation of solitary waves that are propagated through a non-linear optical fiber. The soliton formation is studied theoretically from the non-linear interaction between the external optical excitation and SQDs, considering SQDs as a quantum system of three energy levels. In this study, the Fourier Split-Step (FSS) method is used to solve numerically continuous nonlinear Schrodinger equation (NLSE) to evolution of the soliton pulse emitted by the SQDs inside an optical fiber with real physical parameters. The effect of SQDs density and electric field on the pulse width is also studied. Phase plane portraits are drawn for the stability of soliton in fiber and SQDs using software Matcont

References

[1] Pavesi L., Dal Negro L., Mazzoleni C., et al. Optical gain in silicon nanocrystals. Nature, 2000, vol. 408, pp. 440--444. DOI: 10.1038/35044012

[2] Hu Y.M., Yang W.L., Feng M., et al. Distributed quantum-information processing with fullerene-caged electron spins in distant nanotubes. Phys. Rev. A, 2009, vol. 80, iss. 2, pp. 022322 (1--13). DOI: https://doi.org/10.1103/PhysRevA.80.022322

[3] Maximo L., Mendez Victor H. Autoensamblado de puntos cuanticos. Cinvestav, 2008, vol. 27, pp. 44--49.

[4] Hanewinkel B., Knorr A., Thomas P., et al. Optical near-field response of semiconductor quantum dots. Phys. Rev B, 1997, vol. 55, iss. 20, pp. 13715 (1--10). DOI: https://doi.org/10.1103/PhysRevB.55.13715

[5] Aknmanov S.A., Visloukh V.A., Chirkin A.S. Optics of femtosecond laser pulses. New York, American Institute of Physics, 1992.

[6] Klimov V.I., Mikhailovsky A.A., Xu S., et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science, 2000, vol. 290, pp. 314--317.

[7] Yang W.X., Chen A.X., Lee R.K., et al. Matched slow optical soliton pairs via biexcition coherence in quantum dots. Phys. Rev. A, 2011, vol. 84, iss. 1, pp. 013835 (1--11). DOI: https://doi.org/10.1103/PhysRevA.84.013835

[8] Hu L., Wu H., Du L., et al. The effect of annealing and photoactivation on the optical transitions of band-band and surface trap states of colloidal quantum dots in PMMA. Nanotechnology, 2011, vol. 22, pp. 125202 (1--8). DOI: 10.1088/0957-4484/22/12/125202

[9] Adamashvili G.T., Weber C., Knorr A. Optical nonlinear waves in semiconductor quantum dots: solitons and breathers. Phys. Rev. A, 2007, vol. 75, iss. 6, pp. 063808 (1--9). DOI: https://doi.org/10.1103/PhysRevA.75.063808

[10] Newell A.C. Solitons in mathematics and physics. Philadelphia, Society for Industrial and Applied Mathematics, 1985.

[11] Ajayan P.M., Schadler L.S., Braun P.V. Nanocomposite science and technology, Weinheim, Germany, Wiley, 2003.

[12] Rothenberg J.E., Grischkowsky D., Balant A.C. Observation of the formation of the 0п pulse. Phys. Rev. Lett., 1984, vol. 53, iss. 5, pp. 552--555. DOI: https://doi.org/10.1103/PhysRevLett.62.531

[13] Chen M., Kaup D.J., Malomed B.A. Three-wave solitons and continuous waves in media with competing quadratic and cubic nonlinearities. Phys. Rev. E, 2004, vol. 69, iss. 5, pp. 056605 (1--17). DOI: https://doi.org/10.1103/PhysRevE.69.056605

[14] Bimberg D., Grundmann M., Ledentsov N.N. Quantum dot heterostructures. Chichester, Wiley, 1999.

[15] Schneider S., Borri P., Langbein W., et al. Self-induced transparency in InGaAs quantum-dot waveguides. Appl. Phys. Lett., 2003, vol. 83, pp. 3668--3670. DOI: 10.1063/1.1624492

[16] Panzarini G., Hohenester U., Molinari E. Self-induced transparency in semiconductor quantum dots. Phys. Rev. B, 2002, vol. 65, iss. 16, pp. 165322 (1--6). DOI: https://doi.org/10.1103/PhysRevB.65.165322

[17] Klimov V.I. Nanocrystal quantum dots. Los Alamos Science, 2003, no. 28, pp. 214--220.

[18] Chen Y., Herrnsdorf J., Guilhabert B., et al. Colloidal quantum dot random laser. Opt. Express, 2011, vol. 19, iss. 4, pp. 2996--3003. DOI: https://doi.org/10.1364/OE.19.002996

[19] Akhmediev N., Ankiewicz A. Solitons: nonlinear pulses and beams. London, Chapman and Hall, 1997.

[20] Kevrekidis P.G., Rasmussen K.O., Bishop A.R. Two-dimensional discrete breathers: construction, stability, and bifurcations. Phys. Rev. E, 2000, vol. 61, iss. 2, pp. 2006 (1--7). DOI: https://doi.org/10.1103/PhysRevE.61.2006

[21] Blum K. Density matrix theory and applications. New York, Plenum Press, 1996.

[22] Adamashvili G.T., Knorr A., Weber C. Optical solitons in semiconductor quantum dots. Eur. Phys. J. D, 2008, vol. 47, iss. 1, pp. 113--117. DOI: 10.1140/epjd/e2008-00042-2

[23] Malomed B.A., Kevrekidis P.G. Discrete vortex solitons, Phys. Rev. E, 2001, vol. 64, iss. 2, pp. 026601 (1--6). DOI: https://doi.org/10.1103/PhysRevE.64.026601

[24] Lamb Jr.G.L. Elements of soliton theory. New York, Wiley, 1980.

[25] Lamb Jr.G.L. Optical waves in crystals. New York, Wiley, 1980.

[26] Oster M., Johansson M. Stable stationary and quasiperiodic discrete vortex breathers with topological charge S = 2. Phys. Rev. E, 2006, vol. 73, iss. 6, pp. 066608 (1--6). DOI: https://doi.org/10.1103/PhysRevE.73.066608