Determining Anisotropic Material Properties by Means of Simulating Transmission in a Planar Waveguide

Authors: Vintaikin B.Е., Kondakov O.V., Ivanov K.G. Published: 16.04.2019
Published in issue: #2(83)/2019  
DOI: 10.18698/1812-3368-2019-2-51-63

Category: Physics | Chapter: Optics  
Keywords: bismuth, bisector axis, planar waveguide, magneto-optic effect, anisotropy

The paper presents investigation results concerning a magneto-optic effect occurring in the far infrared range in bismuth. The investigation involves recording transmission in a planar waveguide located in a variable magnetic field. We ran a numerical simulation of the magneto-optic spectrum shapes in the relaxation-time approximation and determined a set of parameters for the electron energy spectrum in bismuth in the effective mass tensor approximation. We found that there is a discrete function describing how relaxation time and charge carrier concentration depend on the magnetic field magnitude. The function stems from the presence of electrons with different effective masses, which are concentrated in the three equivalent L points of the Brillouin zone, and holes in the T point of the Brillouin zone, which have topologically unconnected anisotropic constant energy surfaces


[1] Jain A. Magneto optic current transformer technology (MOCT). IOSR-JEEE, 2017, vol. 12, iss. 1, ver. IV, pp. 46–50. DOI: 10.9790/1676-1201044650

[2] Kondakov O., Ndahayo F. Quantum frequency transformer of radiation. IJMC, 2009, vol. 9, no. D10, pp. 26–38.

[3] Falkovsky L. Quantum magneto-optics in graphene. Photonics, 2015, vol. 2, no. 1, pp. 13–20. DOI: 10.3390/photonics2010013

[4] Golubev V.G., Evseev V.N., Ivanov K.G., et al. Submillimeter line of bismuth in a magnetic field. ZhTF, 1980, vol. 50, pp. 1992–1997 (in Russ.).

[5] Golubev V.G., Evseev V.N., Ivanov K.G., et al. [Propagation of submillimeter plasma waves in bismuth in a magnetic field]. Plazma i neustoychivosti v poluprovodnikakh. Mat. IV Vsesoyuz. simp. [Plasma and Instabilities in Semiconductors. Proc. IV All-Union Symp.]. Vilnyus, 1980, pp. 4–5 (in Russ.).

[6] Edelman V.S. Properties of electrons in bismuth. Sov. Phys. Usp., 1977, vol. 20, no. 10, pp. 819–835. DOI: 10.1070/PU1977v020n10ABEH005467

[7] Vecchi M.P., Mendez E., Dresselhaus M.S. Temperature dependence of the band parameters in Bi and Bi1–XSbX alloys. Proc. Int. Conf. Phys. Semiconductors. Rome, 1976, pp. 459–462.

[8] Golubev V.G., Evseev V.N., Ivanov K.G., et al. Cyclotron mass of electrons in bismuth−tin alloys. Poluprovodniki s uzkoy zapreshchennoy zonoy i polumetally. Mat. V Vsesoyuz. simp. Ch. 1 [Semiconductors with a narrow bandgap and semimetals. Proc. V All-Union Symp.]. Lvov, 1980, pp. 220–222 (in Russ.).

[9] Golubev V.G., Evseev V.N., Ivanov K.G., et al. Cyclotron mass of electrons in bismuth−tin alloys. FTT, 1980, vol. 22, no. 11, pp. 3433–3435 (in Russ.).

[10] Golubev V.G., Evseev V.N., Ivanov-Omskiy V.I., et al. Investigation of dielectric properties of bismuth in submillimeter spectrum region. Izvestiya vuzov. Fizika, 1990, no. 3, pp. 90–93 (in Russ.).

[11] Vasilyeva I.I., Gladkikh O.B. Development of algorithms for modeling the transmission of surface electromagnetic waves in planar waveguide. Nelineynyy mir [Nonlinear World], 2016, vol. 14, no. 5, pp. 28–36 (in Russ.).

[12] Vasilyeva I.I., Gladkikh O.B. [Calculation of submillimeter radiation transmission through symmetrical strip line depending on the magnitude of magnetic field]. Sistemy upravleniya, tekhnicheskie sistemy: ustoychivost, stabilizatsiya, puti i metody issledovaniya. Mat. mezhdunar. nauch.-prakt. konf. [Control systems, technical systems: stability, stabilization, ways and methods of research. Proc. Int. Sci.-Pract. Conf.]. Elets, Bunin Yelets State Univ. Publ., 2016, pp. 107–111 (in Russ.).

[13] Vasilyeva I.I., Gladkikh O.B. [Shape modeling of propagation line of a surface electromagnetic wave in a planar waveguide]. Raspredelennye kompyuternye i telekommunikatsionnye seti: upravlenie, vychislenie, svyaz. Mat. 19 mezhdunar. nauch. konf. [Distributed computer and telecommunication networks: control, calculation, communication. Proc. 19 Int. Sci.-Pract. Conf.]. Moscow, RUDN Univ. Publ., 2016, pp. 272–279 (in Russ.).

[14] Vasilyeva I.I. [Modeling of magneto-optical experiment in bismuth based on calculation of transmittance]. Informatsionno-telekommunikatsionnye tekhnologii i matematicheskoe modelirovanie vysokotekhnologichnykh system. Mat. Vseros. konf. s mezhdunar. uchastiem [Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems. Proc. Russ. Conf. with Int. Participation]. Moscow, RUDN Univ. Publ., 2014, pp. 205–208 (in Russ.).

[15] Bhargava R.N. de Haas-van Alphen and galvanomagnetic effect in Bi and Bi--Pb alloys. Phys. Rev., 1967, vol. 156, iss. 3, pp. 785–789. DOI: 10.1103/PhysRev.156.785