Calculation of the Magnetic Properties of Single-Walled Carbon Nanotubes in the Framework of Density Functional Theory

Authors: Erkovich O.S., Ivliev P.A. Published: 10.08.2016
Published in issue: #4(67)/2016  
DOI: 10.18698/1812-3368-2016-4-56-64

Category: Physics | Chapter: Physics of Magnetic Phenomena  
Keywords: electron density, carbon nanotubes, angular distribution, radial distribution, magnetic field of nanotube

The study tested radial angular distribution of electron density of a single-walled metal type carbon nanotube. Within the research we took into account the electron-electron interaction in the approximation of a right circular cylinder having a constant electrostatic potential. The system under consideration is a cylindrically symmetric potential well with a final height of the wall. In the framework of Kohn - Sham theory and Hartree - Fock self-consistent field approximation we obtained radial and angular distribution of the electron density n(r) in such structures. We presented graphically the radial component of the electron density and concluded that nature of the electron density distribution does not depend on the nanotube radius. Relying on the obtained radial distribution we made a conclusion about the nature of the electrical conductivity of nanotubes, as well as an estimate of their electrical resistance. Taking into consideration the nature of the angular distribution we calculated the magnetic field induction of single-walled carbon nanotubes.


[1] Gao B., Chen Y.F., Fuhrer M.S., Glattli D.C., Bachtold A. Four-point resistance of individual single-wall carbon nanotubes. Physical Review Letters, 2005, no. 95, pp. 1-4.

[2] Vintaykin B.E. Fizika tverdogo tela [Solid state physics]. Moscow MGTU im. N.E. Baumana Publ., 2006. 360 p.

[3] Hartree D.R. The calculation of atomic structures. N.Y., Wiley; London, Chapman and Hall, 1957.

[4] Fock V.A. Fundamentals of quantum mechanics. Moscow, Mir Publ., 1978. 367 p.

[5] Sarry A.M., Sarry M.F. On the density functional theory. Physics of the Solid State, 2012, vol. 54, no. 6, p. 1315. DOI: 10.1134/S1063783412060297

[6] Kohn W. Electronic structure of matter - wave functions and density functionals. Rev. Mod. Phys., 1999, vol. 71, iss. 5, pp. 1253-1266. Available at: http://dx.doi.org/10.1103/RevModPhys.71.1253

[7] Thomas L.H. The calculation of atomic fields. Proc. Cambridge Philos. Soc., 1927, vol. 23, no. 5, pp. 542-548.

[8] Prut V.V. Quasiclassical equation of state. J. Tech. Phys., 2004, vol. 74, no. 12, pp. 10-20 (in Russ.).

[9] Ivliev P.A., Erkovich O.S. Carbon nanotubes: The electron density distribution, possible applications. Fizicheskoe obrazovanie v vuzakh [Physics in Higher Education], 2014, vol. 20, no. 1S, p. 18 (in Russ.).

[10] Abramovits M., Stigan I. Spravochnik po spetsial’nym funktsiyam [Special function handbook]. Moscow, Nauka Publ., 1979. 834 p.

[11] Ivliev P.A. The radial distribution of the electron density in carbon nanotubes. Jelektr. zhur. "Molodezhnyy nauchno-tekhnicheskiy vestnik". MGTU im. N.E. Ваитапа [El. J. Youth Sci.&Tech. Herald of Bauman MSTU], 2014, no. 9, pp. 6-16. Available at: http://sntbul.bmstu.ru/doc/732012.html

[12] Novoselov K.S. Two-dimensional gas of massless Dirac fermions in grapheme. Nature, 2005, vol. 438, pp. 197-200.

[13] Brozdnichenko A.N., Ponomarev A.N., Pronin V.P., Chistotin I.A. Magnetic properties of nanotubes in the process of auto emission current removal. Izv. Ross. gos. ped. univ. im. A.I. Gertsena [Izvestia: Herzen University Journal of Humanities & Sciences], 2006, no. 6 (15), pp. 58-64 (in Russ.).

[14] Ramirez A.P., Haddon R.C., Zhou O. Magnetic susceptibility of molecular carbon: Nanotubes and fullerite. Science, 1994, vol. 265, pp. 84-86.