Longitudinal and Scalar Bosons in Material Media and in Vacuum

Authors: Gorelik V.S. Published: 08.02.2015
Published in issue: #1(58)/2015  
DOI: 10.18698/1812-3368-2015-1-36-55

Category: Physics  
Keywords: boson, photon, paraphoton, axion, polariton, laser, vacuum, dielectric permittivity, conversion, energy, momentum

The article discusses properties of different type bose-particles existing in dielectric media and in vacuum. The author analyzes spectrum of lattice and excitonic polaritons for a two-atom cubic crystal and the character of dielectric function ε(ω) for transverse and longitudinal electromagnetic waves. It is demonstrated that longitudinal electromagnetic waves correspond to zero dielectric permittivity in both material media and vacuum. It is established that for certain polarization geometries during registration of Raman scattering spectra in non-centrosymmetrical crystals like gallium phosphide and lithium niobate transverse and longitudinal electromagnetic waves may be excited. The author analyzed relationship between the energy and quasi-momentum in globular photonic crystals. It is established that in such crystals the photon rest mass is non-zero and can be both positive and negative. It has been found that in dielectric and photonic crystals polariton curves have irregularities corresponding to the so-called unitary polaritons whose refraction index complies with the formula: n2 = 1. The dependencies of energy on momentum for vacuum bosons corresponding to transversal, longitudinal, scalar, and pseudoscalar waves are given. It is shown that longitudinal photons in vacuum have negative effective rest mass. The author analysed conditions of observation for scalar and pseudoscalar bosons (paraphotons and axions) with extremely low rest mass (10-3 ... 10-6 eV), which existence was predicted earlier on the base of astrophysical observations. The author examines the laws of photon-boson conversion using the intensive laser light sources as excitation radiation. The essential increase of such type conversion efficiency is predicted under the transition from spontaneous to stimulated regimes. Specific experimental installations are proposed for observation of the processes of photon-paraphoton conversion.


[1] Okun L.B. Limits on electrodynamics: paraphotons? Zh. Eksp. Teor. Fiz. [J. Exp. Theor. Phys. (JETP), vol. 56, pp. 502-505], 1982, vol. 83, no. 3, pp. 892-895 (in Russ.).

[2] Hoffmann S. Paraphotons and axions: Similarities in stellar emission and detection. Phys. Lett. B, 1986, vol. 193, p. 117-122.

[3] Jaeckel J., Redondo J., Ringwald A. Hidden laser communications through matter - an application of MeV-scale hidden photons. EPL (Europhysics Letters), 2009, EPL 87: 10010, vol. 87, no. 1,pp. 1-5. D0I:10.1209/0295-5075/87/10010

[4] Van Bibber K., Dagdeviren N.R., Koonin S.E., Kerman A.K., Nelson H.N. Proposed experiment to produce and detect light pseudoscalars. Phys. Rev. Lett., 1987, vol. 59, p. 759-762.

[5] Polivanov Yu.N. Raman scattering by polaritons. Usp. Fiz. Nauk [Sov. Phys.-Usp.], 1978, vol. 126, no. 2, pp. 185-232 (in Russ.).

[6] Agranovich V.M., Gartshteyn Yu.N. Spatial dispersion and negative refraction of light. Usp. Fiz. Nauk [Phys.-Usp.], 2006, vol. 176, no. 10, pp. 1051-1068 (in Russ.).

[7] Gorelik V.S. Optics of globular photonic crystals. Quantum Electronics, 2007, vol. 37, no. 5, pp. 409-432.

[8] Gorelik V.S., Shchavlev V.V. Optical devices based on materials with negative refraction. Bull. Lebedev Phys. Inst., 2010, no. 12, pp. 23-32 (in Russ.).

[9] Gorelik V.S. Bound and dark photonic states in globular photonic crystals. Acta Phys. Hung. B, 2006, vol. 26/1-2, pp. 37-46.

[10] Gorelik V.S. Coherent and bound photonic states in globular photonic crystals. J. of Russian Laser Research, 2006, vol. 27, iss. 5, pp. 437-449.

[11] Gorelik V.S. Linear and nonlinear optical phenomena in nanostructured photonic crystals, filled by dielectrics or metals. Eur. Phys. J. Appl. Phys., 2010, vol. 49, no. 3, p. 33007(1)-33007(9). DOI: http://dx.doi.org/10.1051/epjap/2010014

[12] Gorelik V.S. Polaritons and their counterparts in the material and in the physical vacuum. Proc. of Int. Sci. Meeting PIRT-2003 "Physical Interpretations of Relativity Theory". Moscow, 2003, pp. 56-81 (in Russ.).

[13] Gorelik V.S. Dynamics of lattice models of media and physical vacuum. Proc. of Int. Sci. Meeting PIRT-2005 "Physical interpretations of relativity theory". Moscow, 2005, pp. 70-76.

[14] Gorelik V.S. Microstructure of crystalline physical vacuum and photon-boson. Gravitation and Cosmology, 2006, vol. 12, no. 2-3, pp. 151-154.

[15] Gorelik V.S. Dynamic of lattice models of media and physical vacuum. Proc. of Int. Sci. Meeting PIRT-2005 "Physical interpretations of relativity theory". Moscow, 2005, p. 70.

[16] Tareeva M.V., Gorelik V.S., Kudryavtseva A.D., Chernega N.V. Spectral and energy characteristics of stimulated globular scattering of light. Bull. Lebedev Phys. Inst., 2010, no. 11, pp. 35-41 (in Russ.).

[17] Gorelik V.S., Kudryavtseva A.D., Tareeva M.V., Chernega N.V. On generation of pulsed acoustic waves in globular photonic crystals. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2011, no. 2(41), pp. 3-15 (in Russ.).

[18] Sikivie P., Tanner D.B., Van Bibber K. Resonantly enhanced axion-photon regeneration. Phys. Rev. Lett., 2007, vol. 98. 172002(1)-172002(4). DOI: 10.1103/PhysRevLett.98.172002

[19] Andriamonje S., Aune S., Autiero D., Barth K., Belov A. An improved limit on the axion-photon coupling from the CAST experiment. J. Cosmol. Astropart. Phys., 2007, iss. 4, pp. 1-23. DOI:10.1088/1475-7516/2007/04/010

[20] Chou A.S., Wester W., Baumbaugh A., Gustafson H.R., Irizarry-Valle Y., Mazur P.O., Steffen J.H., Tomlin R., Upadhye A., Weltman A., X.Yang, Yoo J. A search for chameleon particles using a photon regeneration technique. Phys. Rev. Lett., 2009, vol. 102, p. 080402(1)-080402(4). DOI: 10.1103/PhysRevLett.102.030402

[21] Pugnat P., Duvillaret L., Jost R., Vitrant G., Romanini D., Siemko A., Ballou R., Barbara B., Finger Mich., Finger Mir., Hosek J., Kral M., Meissner K.A., Sulc M., Zicha J. First results from the OSQAR photon regeneration experiment: No light shining through a wall. Phys. Rev. D., 2008, vol. 78, pp. 092003(1)-092003(5). D0I:10.1103/PhysRevD.78.092003

[22] Afanasev A., Baker O.K., Beard K.B., Biallas G., Boyce J., Minarni M., Ramdon R., Shinn M., Slocum P. (LIPS Collaboration). Experimental limit on optical-photon coupling to light neutral scalar bosons. Phys. Rev. Lett., 2008, vol. 101, pp. 120401(1)-120401(4). DOI: 10.1103/PhysRevLett.101.120401

[23] Ahlers M., Gies H., Jaeckel J., Redondo J., Ringwald A. Laser experiments explore the hidden sector. Phys. Rev. D., 2008, vol. 77, pp. 095001(1)-095001(9). DOI: 10.1103/PhysRevD.77.095001

[24] Mueller G., Sikivie P., Tanner D.B., Van Bibber K.; Tanner D.B, eds. Resonantly-enhanced axion-photon regeneration. Proc. Int. Conf "Axions 2010", N.Y, American Institute of Physics, 2010, pp. 150-155. Available at: http://www.phys.ufl.edu/tanner/PDFS/Mueller10aps-reapr.pdf (accessed 27.05.2014).

[25] Chou A.S., Aaron S. (GammeV Collaboration). Search for chameleon particles using a photon-regeneration technique. Phys. Rev. Lett., 2009, vol. 102, pp. 030402(1)-030402(4).

[26] The LIGO Scientific Collaboration & The Virgo Collaboration. An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 20 august 2009, vol. 460, pp. 990-994. DOI:10.1038/nature08278

[27] Jaeckel J., Ringwald A. Search for hidden sector photons with the ADMX Detector. Phys. Rev. Lett., 2010, vol. 105, pp. 171801(1)-171801(4).