|

Possibilities of dark matter elementary particles registration

Authors: Gorelik V.S. Published: 03.12.2014
Published in issue: #6(57)/2014  
DOI:

 
Category: Physics  
Keywords: axion, parafoton, resonator, receiver, rest mass, conversion, laser, generation

The paper considers the modern opportunities for experimental detection of dark matter particles (axions). In accordance with the theoretical predictions, these particles have very small rest mass corresponding to the energy in the range of 0.001... 1.0 meV It discusses the possibilities of the visible range laser radiation conversion into the emission of axions both in vacuum and in material media as well as the inverse processes using experimental facilities for the Primakoff effect observation ("Light shining through wall"). It is proposed to implement a stimulated photon-axion conversion for pumping while using the pulsed laser sources with a high spectral intensity of radiation. To improve the efficiency of the photon-axion conversion, it is also suggested to use the dielectric media characterized by the presence of unitary polaritons in their spectrum, if their refractive index is close to one. In this case, the synchronism conditions can be fulfilled during an elementary process of axion-photon conversion. Schemes of the possible experiments are presented to observe the processes ofconversion ofaxions into microwave photons at low temperatures in a strong magnetic field.

References

[1] Ryabov V.A., Tsarev V.A., Tskhovrebov A.M. Poiski chastitz tiomnoy materii. [The search for dark matter particles] // Usp. Fiz. Nauk [Phys.-Usp., vol. 51, no. 11, pp. 1091-1121], 2008, vol. 178, no. 11, pp. 1129-1164 (in Russ.). doi: 10.3367/UFNr.0178.200811a.1129

[2] Appelquist T., Cheng H.-C., Dobrescu B.A. Bounds on universal extra dimensions // Phys. Rev. D, 2001, vol. 62, pp. 035002.

[3] Servant G., Tait T.M. Is the lightest Kaluza-Klein particle a viable dark matter candidate? // Nucl. Phys. 2003, vol. 650, no. 1-2, pp. 391-419.

[4] Goldstone J., Salam A., Weinberg S. Broken symmetries // Phys. Rev. 1962, vol. 127. pp. 965-970.

[5] Kim J.E., Garosi G. et al. Inclusive search for standard model Higgs boson production in the WW decay channel using the CDF II Detector // Reviews of Modern Physics. 2010, vol. 82. pp. 557-601. doi: 10.1103/PhysRevLett.104.061803

[6] Hoffmann S. Paraphotons and axions: Similarities in stellar emission and detection // Phys. Lett. B., 1986, vol. 193, pp. 117-122.

[7] Picciotto C., Pospelov M. Unstable Relics as a Source of Galactic Positrons // Phys. Lett. B, vol. 605, 2005, pp. 15-25.

[8] Okun L.B. Predely elektrodinamiki: parafotony? [Limits Of Electrodynamics: Paraphotons?] // Zh. Eksp. Teor. Fiz. [J. Exp. Theor. Phys.], 1982. vol. 83, pp. 892-898 (in Russ).

[9] Jaeckel J., Redondo J., Ringwald A. Hidden Laser Communications through Matter? An Application of meV-scale Hidden Photons // EPL (Europhysics Letters), 2009, vol. 89, p. 10010.

[10] Sikivie P., Tanner D.B., Van Bibber K. Resonantly Enhanced Axion-Photon Regeneration // Phys. Rev. Lett., 2007, vol. 98, pp. 172002(1)-172002(4). DOI: 10.1103/PhysRevLett.98.172002

[11] Van Bibber K., Dagdeviren N.R., Koonin S.E., Kerman A.K., Nelson H.N. Proposed experiment to produce and detect light pseudoscalars// Phys. Rev. Lett., 1987, vol. 59, pp. 759-762.

[12] Duffy L.D., Sikivie P., Tanner D.B., Asztalos S.J., Hagmann C., Kinion D., Rosenberg L.J., Van Bibber K., Yu D.B., Bradley R.F. High resolution search for dark-matter axions // Phys. Rev. D., 2006, vol. 74, pp. 012006(1)-012006(11). DOI: 10.1103/Phys. Rev. D. 74.012006

[13] Rosenberg I.J., Van Bibber K.A. Searches for invisible axions // Phys. Rep. 2000, vol. 325, no. 1, pp. 1-39 (39). DOI: http://dx. DOI.org/10.1016/S0370-1573(99)00045-9.

[14] Stancil D.D. Long distance signaling using axionlike particles // Phys. Rev. D. 2007, vol. 76, no. 11, p. 111701(R).

[15] Afanasev A., Baker O.K., Beard K.B., Biallas G., Boyce J., Minarni M., Ramdon R., Shinn M., Slocum P. LIPSS Collaboration. Experimental limit on optical-photon coupling to light neutral scalar bosons // Phys. Rev. Lett. 2008, vol. 101, iss. 12, p. 120401. DOI: 10.1103/PhysRevLett.101.120401.

[16] Mueller G., Sikivie P., Tanner D.B., K. Van Bibber K.A.; eds. Resonantly-enhanced axion-photon regeneration // Proc. Int. Conf. "Axions 2010". American Institute of Physics, Florida, USA, 2010, pp. 150-155. URL: http://www.phys.ufl.edu/tanner/PDFS/Mueller10aps-reapr.pdf (accessed 17.02.2014).

[17] Asztalos S.J., Carosi G., Hagmann C., Kinion D., Van Bibber K., Hotz M., Rosenberg L.J., Rybka G., Hoskins J., Hwang J., Sikivie P., Tanner D.B., Bradley R., Clarke J. SQUID-based microwave cavity search for dark-matter axions // Phys. Rev. Lett., 2010, vol. 104, iss.4, p. 041301. DOI: 10.1103/PhysRevLett.104.041301.

[18] Friedland A., Giannotti M., Wise M. Constraining the axion-photon coupling with massive stars//Phys. Rev. Lett., 2013, vol. 110, iss. 6, pp. 061101(1)-061101(5). DOI: 10.1103/PhysRevLett.110.061101

[19] Bellini G., Benziger J., Bick D. et al. Search for solar axions produced in p(d, 3He). A reaction with Borexino detector // Phys. Rev. D, 2012, vol. 85, pp. 092003(1)-092003(11). DOI: 10.1103/PhysRevD.85.092003

[20] Hudson H.S., Acton L.W., DeLuca E., Hannah I.G., Reardon K., Van Bibber K. X-ray searches for solar axions // Proc. 4th Hinode Science Meeting: "Unsolved Problems and Recent Insights". Mondello, Palermo, Italy, 2012, vol. 455, pp. 25-34.

[21] Gorelik V.S. Linear and nonlinear optical phenomena in nanostructured photonic crystals filled with dielectrics or metals // Eur. Phys. J. Appl. Phys., 2010, vol. 49, no.3, pp. 3307(1)-3307(9). DOI: http://dx.doi.org/10.1051/epjap/2010014

[22] Gorelik V.S., Sushchinskii M.M. Kombinatzionnoye rasseianiye sveta v kristallakh [Raman scattering of light in crystals] // Usp. Fiz. Nauk [Sov.Phys. Usp.], 1969, vol. 98, pp. 237-298 (in Russ.).

[23] Gorelik V.S., Izmailov G.N. Stimulirovannaya konversia fotonov v psevdoskalarnaye bozony [Stimulated Photon Conversion into Pseudo-Scalar Bosons] // Bull. Lebedev Phys Inst, 2011, vol. 38, no. 6, pp. 177-183. (in Russ.).

[24] Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics // Phys. Rev. Lett., 1987, vol. 58, no. 20, pp. 2059-2062. DOI: http:// dx.doi.org/10.1103/PhysRevLett.58.2059

[25] John S. Strong Localization of Photons in Certain Disordered Dielectric Superlattices // Phys. Rev. Lett., 1987, vol. 58, pp. 2486-2489.

[26] Dowling J.P., Bowden C.M. Atomic emission rates in inhomogeneous media with applications to photonic band structures // Phys. Rev. A., 1992, vol. 46, no. 1, pp. 612622.

[27] John S., Quang T. Localization of Superradiance near a Photonic Bandgap //Phys. Rev. Lett, 1995, vol. 74, no. 17, pp. 3419-3422.

[28] Astratov V.N., Bogomolov V.N., Kaplyanskii A.A., Prokofiev A.V., Samoilovich L.A., Samoilovich S.M., Vlasov Yu.A. Optical spectroscopy of opal matrices with CdS embedded in its pores: Quantum confinement and photonic band gap effects // Nuovo Cimento D. 1995, vol. 17, no. 11-12. pp. 1349-1354.

[29] Bogomolov V.N., Gaponenko S.V., Kapitonov A.M., Prokofiev A.V., Ponyavina A.N., Silvanovich N.I., Samoilovich S.M. Photonic band gap in the visible range in a threedimensional solid state lattice // Appl. Phys. A., 1996, vol. 63, no. 6, pp. 613-616.

[30] Purcell E.M. Spontaneous emission probabilities at radio frequencies // Phys. Rev. 1946, vol. 69, p. 681.

[31] Gorelik V.S. Optika globuliarnykh fotonnykh kristallov [Optics of globular photonic crystals] // Kvantovaya Elektron. [Quantum Electronics], 2007, vol. 37 (5), pp. 409432. (in Russ.).

[32] Gorelik V.S. Optika globuliarnykh fotonnykh kristallov [Optics of Globular Photonic Crystals] // Laser Physics, 2008, vol. 18 (12), pp. 1479-1500.

[33] Voshchinskii Yu.A., Gorelik V.S. Dispersion Law in Photonic Crystals in Sinusoidal and Quasi-Relativistic Approximations // Inorganic Materials, 2011, vol. 47, no. 2, pp. 148-151.

[34] Josephson B.D. Possible new effects in superconductive tunneling // Phys. Lett.,1962, vol. 1, pp. 251-253.

[35] Larkin S.Yu. Izmerenie chastoty monokhromaticheskogo SVCh-polya na osnove nestatsionarnogo effekta Dzhozefsona [Frequency measurement of monochromatic microwave field on the basis of the nonstationary Josephson effect]. Kiev, Naukova Dumka, 1999, 271 p.

[36] Shapiro S., Janus A.R., Holly S. Effect of microwaves in Josephson current in superconducting tunneling // Rev. Mod. Phys, 1964, vol. 36, pp. 223-225.

[37] Golovashkin A.I., Elenskiy V.G., Likharev K.K. Effekt Dzhozefsona i ego primenenie [Josephson effect and its application]. Moscow, Nauka Publ., 1983, 222p.

[38] Hoffman С., Lefloch F., Sanquer M., Pannetier B. Mesoscopic transition in the shot noise of diffusive superconductor - normal-metal - superconductor junctions // Phys. Rev. B, 2004, vol. 70, pp. 180503(R). DOI: 10.1103/PhysRevB.70.180503

[39] Beck C. Possible Resonance Effect of Axionic Dark Matter in Josephson Junctions // Phys. Rev. Lett., 2013, vol. 111, iss.23, p. 231801. URL: prl.aps.org/abstract/PRL/v111/i23/e231801.