On the Equation of State of the Simple Matter, which Describes the Three-Phase Equilibrium

Authors: Magomedov M.N.  Published: 17.08.2013
Published in issue: #2(49)/2013  

Category: Physics  
Keywords: localization, delocalization, interatomic potential, free energy, binodal, spinodal, S-loop

The statistical model of simple matter is developed where N-Nd particles are localized in cells of the virtual lattice (L-particles) while Nd particles are delocalized (D-particles), i.e., can migrate along the entire volume of the system. The virtual lattice is a regular lattice consisting of Nv vacant and N occupied cells with equal volumes. Based on the pairwise interatomic Mie-Lennard-Jones potential and with the use of approximation of "only nearest neighbors" interactions, the expression is derived for a specific (per particle) free energy (f) of the model, which transfers in the limiting cases to expressions for gas or crystal. The calculations of the equation of state P = - (df/dv) T for argon have shown that the function P (v) at intermediate temperatures has two S-loops on isotherms, which correspond to the crystal-liquid and liquid-gas phase transitions.


[1] Magomedov M.N. Izuchenie mezhatomnogo vzaimodeystviya, obrazovaniya vakansiy i samodiffuzii v kristallakh [Study of interatomic interaction, vacancy formation, and self-diffusion in crystals]. Moscow, Fizmatlit Publ., 2010. 544 p.

[2] Magomedov M.N. Calculation of the activation energy for bulk self-diffusion in a simple substance. Phys. Met. Metallogr., 1992, vol. 74, no. 4, pp. 319–321.

[3] Magomedov M.N. Self-diffusion parameters in carbon-subgroup crystals. Semiconductors, 2010, vol. 44, no. 3, pp. 271-284. doi: 10.1134/S1063782610030012

[4] Magomedov M.N. Probability of vacancy formation. High Temp., 1989, vol. 27, no. 2, pp. 217–222.

[5] Magomedov M.N. Calculation of the entropy and vacancy formation volume. Izv. RAN. Ser. Metally [Proc. Russ. Acad. Nauk. Ser. Metalls], 1992, no. 5, pp. 73–79 (in Russ.).

[6] Magomedov M.N. Change of coordination number during melting and in the liquid phase. High Temp., 2001, vol. 39, no. 4, pp. 518–524.

[7] Hirschfelder J.O., Curtiss Ch.F., Bird R.B. Molecular theory of gases and liquids. New York, Wiley, 1954. 1249 p. (Russ. ed.: Girshfel’der Dzh., Kertiss Ch., Berd R. Molekulyarnaya teoriya gazov i zhidkostey. Moscow, Inostrannaya literature Publ., 1961. 931 p.). ISSN 1812-3368. Вестник МГТУ им. Н.Э. Баумана. Сер. "Естественные науки". 2013. № 2 41

[8] Frenkel’ Ya.I. Kineticheskaya teoriya zhidkostey [Kinetic theory of liquids]. Leningrad, Nauka Publ., 1975. 592 p.

[9] Stishov S.M. Thermodynamics of melting of simple substances.Phys.-Usp., 1974, vol. 114, no. 1, pp. 3–40.

[10] Magomedov M.N. On the determination of the Debye temperature from experimental data. Phys. Solid State, 2003, vol. 45, no. 1, pp. 32–35. doi: 10.1134/1.1537405

[11] March N.H., Tosi N.P. Introduction to Liquid State Physics. London,World Sci. Publ., 2002. 432 p.

[12] Mikolaj G.J., Pings C.J. Structure of Liquids. J. Chem. Phys., 1967, vol. 46, no. 4, pp. 1401–1411.

[13] Magomedov M.N. Random packing of monoatomic structures. J. Struct. Chem., 2008, vol. 49, no. 1, pp. 156-159. doi: 10.1007/s10947-008-0021-8

[14] Landau L.D. On the theory of phase transition. Zh. Eksp. i Teor. Fiz. [J. Exp. Theor. Phys.], 1937, vol. 7, no. 1, pp. 19–32 (in Russ.).

[15] Landau L.D., Lifshitz E.M. Statistical physics. Vol. 1. Oxford, Pergamon Press, 1980.

[16] Klimontovich Yu.L. Statisticheskaya fizika [Statistical physics]. Moscow, Nauka Publ., 1982. 608 p.