Estimation of Influence of Features of the Gas-Aerosol Cloud Composition on the Background Radiation Spectrum of the Exposed Atmosphere

Authors: Sadovnikov R.N., Boiko A.Yu., Shlygin P.E. Published: 19.12.2013
Published in issue: #4(51)/2013  

Category: Physics  
Keywords: emergency emission, dangerous substance identification, gas-aerosol cloud, absorption spectrum, spectroradiometer

A two-component cloud is considered, which contains a gas component to be identified using the spectroradiometric method and an aerosol appearing for the disturbing factor. The model of monitoring of the atmosphere pollution is developed, in which elastic scattering of the incident light by aerosol and its resonance absorption by the gas component are examined. An equation for determining a minimal concentration of the identifiable gas component at the specified signal-to-noise ratio of the spectroradiometer is derived in the context of the offered model. The analytical solution is obtained for the particular case, when the absorption crosssections for the maximum and minimum of the radiation absorption intensity within the limits of the resonance line under consideration differ from each other by a factor of 2. It is shown, that reduction in the aerosol particle dispersion sharply decreases the capability of gas component identification. The conducted estimations have shown that if the provided signal-to-noise ratio is equal to 10, the gaseous contaminants identification is practically impossible already at an aerosol concentration of about 20 g/m2 when a particle size is equal to 10 ^m.


[1] Akhobadze G.N. Methods for air pollution control. Ekol. Proizvod. [Ecol. Prod.], 2010, no. 1, pp. 35-41 (in Russ.).

[2] Molles M.C. Ecology: concepts and applications. New York, McGraw-Hill, 2008. 604 p.

[3] Korolenko L.I., Sinitsyna O.R. Methods of measuring the concentration of pollutants in industrial emissions. Ekol. Proizvod. [Ecol. Prod.], 2011, no. 11, pp. 50-53 (in Russ.).

[4] Borovlev A.E., Kungurtsev S.A. The hardware-software lidar complex as an element of the geoinformation analytical system of Belgorod. Ekol. Prib. Sist. [Ecol. Instrum. Syst.], 2008, no. 11, pp. 56-59 (in Russ.).

[5] Fokin M.V., Bespalov M.S., Oseledets E.Yu., Uspenskaya T.M. Air quality control at the SPZ border. Ekol. Proizvod. [Ecol. Prod.], 2010, no. 4. pp. 50-52 (in Russ.).

[6] Snyde A.P., Jensen J.O., Maswadeh W.M. AIRIS remote detection for chemical vapor clouds: System design and detection algorithm. Lasers Electro Opt., 2007, pp. 1-2. doi: 10.1109/ CLEO 2007.4453375.

[7] Zuev V.E., Zuev V.V. Sovremennye problemy atmosfernoy optiki. T. 8. Distantsionnoe opticheskoe zondirovanie atmosfery [Modern problems of atmospheric optics. Vol. 8. Remote optical sensing of the atmosphere]. St. Petersburg, Gidrometeoizdat Publ., 1992. 232 p.

[8] Bianchini G., Cortesi U., Palchetti L. Emission Fourier transform spectroscopy for the remote sensing of the atmosphere. Opt. Lasers Eng., 2002, vol. 37, no. 2-3, pp. 187-202.

[9] Zolotov Yu.A. Problemy analiticheskoy khimii. T. 13. Vnelaboratornyy khimicheskiy analiz [Problems of analytical chemistry. Vol. 13. Non-laboratory chemical analysis]. Moscow, Nauka, 2010. 504 p.

[10] Glagolev K.V., Morozov A.N., Nazarenko B.P. Monitoring of the open atmosphere by the FTIR spectrometer. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2005, no. 3 (18), pp. 9-25 (in Russ.).

[11] Shimoto A., Kobayashi H., Kadokura S. Radiometric calibration for the airborne interferometric monitor for greenhouse gases simulator. Appl. Opt., 1999, vol. 38, pp. 571-576.

[12] Beil A., Daum R., Matz G. Remote sensing of atmospheric pollutants by passive FTIR spectrometry. Proc. SPIE, 1998, vol. 3493, pp. 32-43.

[13] Heland J., Schaffer K. Analysis of aircraft exhaust with Fourier-transform infrared emission spectroscopy. Appl. Opt., 1997, vol. 36, pp. 4922-4931.

[14] Morozov A.N., Svetlichnyy S.I. Osnovy fur’e-spektroradiometrii [Fundamentals of Fourier transform spectroradiometry]. Moscow, Nauka Publ., 2006. 275 p.

[15] Hoffland L., Piffath R., Bouk J. Spectral signature of chemical agents and stimulants. Opt. Eng., 1985, vol. 24, no. 6, pp. 982-984.

[16] Kochikov I.V., Morozov A.N., Svetlichnyi S.I., Fufurin I.L. Substance recognition in the open atmosphere from a single Fourier transform spectroradiometer interferogram. Opt. Spectrosc., 2009, vol. 106, no. 5, pp. 666-671. doi: 10.1134/S0030400X09050075.

[17] Dvoruk S.K., Kornienko V.N., Kochikov I.V., Lel’kov M.V., Morozov A.N., Pozdnyakov V.A., Svetlichnyi S.I., Tabalin S.E. Processing of double-sided interferograms subject to background self-radiation of an FTIR spectrometer. Opt. Spectrosc., 2002, vol. 93, no. 6, pp. 970-974. doi: 10.1134/1.1531725.

[18] Zamay S.S., Yakubaylik O.E. Modeli otsenki i prognoza zagryazneniya atmosfery promyshlennymi vybrosami v informatsionno-analiticheskoy sisteme prirodookhrannykh sluzhb krupnogo goroda [Models for estimating and predicting the air pollution by industrial emissions in the information-analytical system of environmental protection services of big cities]. Krasnoyarsk, Krasnoyarsk Gos. Univ. Publ., 1998. 109 p.

[19] Yakush S.E. Gidrodinamika i gorenie gazovykh i dvukhfaznykh vybrosov v otkrytoy atmosfere [Hydrodynamics and combustion of gas and two-phase outbursts in the open atmosphere]. Diss. dokt. fiz.-mat. nauk [Dr. phys.-math. sci. diss.]. Moscow, 2000. 336 p.

[20] Born M., Wolf E. Principles of Optics. New York, McGraw-Hill, 1972, 703 p. (Russ. ed.: Born M., Vol’f E. Osnovy optiki. Moscow, Nauka Publ., 1973. 720 p.).

[21] Landsberg G.S. Optika [Optics]. Moscow, Fizmatlit Publ., 1976. 926 p.

[22] Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York, John Wiley, 1986. 484 p. (Russ. ed.: Nakamoto K. IK-spektry i spektry KR neorganicheskikh i koordinatsionnykh soedineniy. Moscow, Mir Publ., 1991. 536 p.).