|

Investigation of Surface Dielectric Barrier Discharge, Created by Parallel Planar Electrodes

Authors: Andreev V.V. Published: 19.12.2013
Published in issue: #4(51)/2013  
DOI:

 
Category: Physics  
Keywords: dielectric surface barrier discharge, plasma-chemical process, the ozone synthesis, the optimal configuration of the electric field, the energy effectiveness of plasma-chemical processes

The influence of electric field intensity as well as of other physical parameters on the formation of a dielectric barrier discharge is investigated. Formulas for estimation of the geometrical dimensions and the duration of existence of a separate microdischarge in the cells of the dielectric barrier discharge are analyzed. These formulas are studied for model systems of two types: (1) the planar electrode coated with a dielectric, to which the second planar metal electrode is adjoined perpendicularly; (2) the planar electrode with a dielectric coating, perpendicularly to which the second electrode with a cylindrical cross section is adjoined. The barrier discharge is investigated, which arises on the dielectric surface where planar metallic electrodes are arranged in a parallel row. On the opposite side of the dielectric surface, the solid grounded electrode is located. It is shown that there is an optimal geometric configuration of the discharge cell (a width of the metal strip, a width of the gap between the strips-electrodes on the dielectric surface), for which the best energy effectiveness of plasma-chemical processes is achieved. The results obtained can be used for the development of new plasma-chemical reactors for finding optimal regimes of their work with the aim of increasing the desired product yield while reducing simultaneously the power consumption of the facility.

References

[1] Shibkov V.M., Aleksandrov A.F., Ershov A.P. Timofeev I.B., Chernikov V.A., Shibkova L.V. Freely localized microwave discharge in a supersonic gas flow.Plasma Phys. Rep., 2005, vol. 31, no. 9, pp. 795-801.

[2] Shibkov V.M., Aleksandrov A.F., Ershov A.P., Karachev A.A., Konstantinovskiy R.S., Timofeev I.B., Chernikov V.A., Shibkova L.V. Inflammation of the supersonic flow of hydrocarbon fuels using microwave discharges. Moscow Univ. Bull., Ser. 3, Phys. Astron., 2004, no. 5, pp. 67-69.

[3] Artana G., D’Adamo J., Leger L. Flow control with electrohydrodynamic actuators. AIAA Paper, 2001, no. 2001-0351, Reno, Nevada.

[4] Leonov S., Gromov V, Kuriachy A., Yarantsev D. Mechanisms of flow control by near-surface electric discharge generation. AIAA Paper, 2005, no. 2005-0780, Reno, Nevada.

[5] Corke T.C., Post M.L. Overview of plasma flow control: concepts, optimization and applications. AIAA Paper, 2005, no. 2005-0563, Reno, Nevada.

[6] Hall K.D., Jumper E.J., Corke T.C., McLaughlin T.E. Potential. Flow model of a plasma actuator as a lift enhancement device. AIAA Paper, 2005, no. 2005-0783, Reno, Nevada.

[7] Kuryachii A.P., Rus’yanov D.A., Skvortsov V.V., Chernyshev S.L. Modeling the system of electrogasdynamic final-control elements. Fluid Dyn., 2011, vol. 46, no. 5, pp. 764-774. doi: 10.1134/S0015462811050103.

[8] Nevar E.A., Savastenko N.A., Bryuzer V., Lopatik D.A., May F., Butsen A.V., Tarasenko N.V., Burakov V.S. Plasma synthesis and treatment of nanosized chalcopyrite particles. J. Appl. Spectrosc., 2010, vol. 77, no. 1, pp. 126-131. doi: 10.1007/s10812-010-9303-y.

[9] Burakov V.S., Tarasenko N.V., Butsen A.V., Nedelko M.I., Nevar A.A. Laser and plasma methods of fabrication and magnetic properties of gadolinium silicide nanopowerders. Probl. Fiz. Mat. Tekh. [Probl. Phys. Math. Technol.], 2011, no. 2 (7), pp. 22-25 (in Russ.).

[10] Lunin V.V., Popovich M.P., Tkachenko S.N. Fizicheskaya khimiya ozona [Physical chemistry of ozone]. Moscow, MGU Publ., 1998. 480 p.

[11] Andreev V.V., Vasil’eva L.A., Kravchenko G.A., Pichugin Yu.P., Filippov V.G. The results of studies of the barrier discharge structure. Nelineynyy Mir [Nonlinear World], 2009, vol. 7, no. 11, pp. 811-819 (in Russ.).

[12] Andreev V.V., Vasilyeva L.A., Matyunin A.N., Pichugin Yu.P. Investigation of the barrier discharge structure near the electrode with a cylindrical cross section. Plasma Phys. Rep., 2011, vol. 37, no. 13, pp. 1190-1195. doi: 10.1134/S1063780X11090017.

[13] Pichugin Yu.P. The relevance and effectiveness of multi-barrier ozone generators. Mater. 25 Vseross. Semin. "Ozon i drugie ekologicheski chistye okisliteli. Nauka i tekhnologii" [Proc. 25th All-Russ. Semin. "Ozone and other environmentally friendly oxidizers. Science and technology"], 2003. pp. 36-47 (in Russ.).

[14] Samoylovich V.G., Gibalov V.I., Kozlov K.V. Fizicheskaya khimiya bar’ernogo razryada [Physical chemistry of the barrier discharge]. Moscow, MGU Publ., 1989. 176 p.

[15] Cieplak T., Yamabe C., Olchowik J.M., Ozonek J. Analysis of the process of ozone generation and micro-channel intensity distribution by the discharge analysis method. Mater. Sci.-Poland, 2006, vol. 24, no. 4, pp. 1087-1093.

[16] Sokolova M.V. Optimization of the formation of ozone in an electric discharge. Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Energ. Avtom. [Bull. Acad. Sci. USSR, Tech. Sci. Sec., Power Eng. Autom.], 1983, no. 6, pp. 99-107 (in Russ.).

[17] Rayzer Yu.P. Fizika gazovogo razryada [Physics of gas discharge]. Moscow, Nauka Publ., 1987. 592 p.

[18] Andreev V.V., Vasil’eva L.A. Investigation of the surface barrier discharge generated by the electrodes in the form of a series of parallel metal strips. Prikl. Fiz. [Appl. Phys.], 2012, no. 6, pp. 116-122 (in Russ.).

[19] Feynman R.P., Leighton R.B., Sands M. The Feynman lectures on physics. Vol. 2. Addison-Wesley, 1964. 534 p. (Russ. ed.: Feynman R., Leyton R., Sends M. Feynmanovskie lektsii po fizike: Elektrichestvo i magnetizm. T. 5. Moscow, Mir Publ., 1977. 304 p.).