Fiber-Optic Raman Spectroscopy in Lithium Hydroxide Monohydrate Crystal

Authors: Gorelik V.S., Dongxue Bi, Pashchenko A., Voinov Yu.P., Yurasov N.I., Yurasova I.I.  Published: 26.01.2018
Published in issue: #1(76)/2018  
DOI: 10.18698/1812-3368-2018-1-74-83

Category: Physics | Chapter: Crystallography, Physics of Crystals  
Keywords: spectroscopy, fiber, scattering, lithium, hydroxide, group theory, oscillation, spectrometer, laser

The purpose of this research was to register Raman spectra in a lithium hydroxide monohydrate crystal over a wide spectral range at room temperature using fiber-optical spectroscopy. We carried out the registration of Raman spectra at the spectral region 180...1600 cm-1. The spectral bands obtained were attributed to oscillations races in Raman spectrum of lithium hydroxide monohydrate crystal. In Raman spectra of the crystal we found lattice modes corresponding to translations of lithium ions, hydroxyl groups and water molecules, and to libration of water molecules and hydroxyl groups. As a result, we observed intense Raman lines in the low-frequency region of the spectrum. This opens an opportunity to observe stimulated Raman scattering by lattice modes in these crystals


[1] Jaswal S.S., Sharma T.P., Wolfram G. Second-order Raman spectra and phonon spectrum of LiD. Solid State Communications, 1972, vol. 11, iss. 9, pp. 1151–1155. DOI: 10.1016/0038-1098(72)90813-7

[2] Laplaze D. Second-order Raman spectra of LiH. Physica Status Solidi, 1979, vol. 91, iss. 1, pp. 59–69. DOI: 10.1002/pssb.2220910105

[3] Anderson A., Luty F. Raman scattering, defect luminescence, and phonon spectra of  7LiH, 6LiH, and 7LiD crystals. Phys. Rev. B, 1983, vol. 28, iss. 6, pp. 500–503. DOI: 10.1103/PhysRevB.28.3415

[4] Okazaki S., Ohtori N., Okada I. Raman spectroscopic study on the vibrational and rotational relaxation of OH- ion in molten LiOH. Journal of Chemical Physics, 1989, vol. 91, no. 9, pp. 5587–5591. DOI: 10.1063/1.457560

[5] Harbach F., Fischer F. Raman spectra of lithium hydroxide single crystals. Journal of Physics & Chemistry of Solids, 1975, vol. 36, iss. 6, pp. 601–603. DOI: 10.1016/0022-3697(75)90149-3

[6] Hase Y., Yoshida I.V.P. The Raman active vibrational modes and isotopic effects of four isoto-pically substituted lithium hydroxides. Chemical Physics Letters, 1979, vol. 65, iss. 1, pp. 46–49. DOI: 10.1016/0009-2614(79)80122-0

[7] Walrafen G.E., Douglas R.T.W. Raman spectra from very concentrated aqueous NaOH and from wet and dry, solid, and anhydrous molten, LiOH, NaOH, and KOH. Journal of Chemical Physics, 2006, vol. 124, iss. 11, pp. 114504–114504-14. DOI: 10.1063/1.2121710

[8] Megahed S., Ebner W. Lithiumion battery for electronic applications. Journal of Power Sources, 1995, vol. 54, iss. 1, pp. 155–162. DOI: 10.1016/0378-7753(94)02059-C

[9] Laude T., Kobayashi T., Sato Y. Electrolysis of LiOH for hydrogen supply. International Journal of Hydrogen Energy, 2010, vol. 35, iss. 2, pp. 585–588. DOI: 10.1016/j.ijhydene.2009.11.028

[10] Kim Y., Choi K.Y., Chamberlin T.A. Kinetics of melt transesterification of diphenyl carbonate and bisphenol A to polycarbonate with lithium hydroxide monohydrate catalyst. Industrial & Engineering Chemistry Research, 1992, vol. 31 (9), pp. 2118–2127. DOI: 10.1021/ie00009a008

[11] Sebastian L., Gopalakrishnan J. Lithium ion mobility in metal oxides: A materials chemistry perspective. Journal of Materials Chemistry, 2003, vol. 13, no. 3, pp. 433–441. DOI: 10.1039/B211367H

[12] Tayal V.P., Srivastava B.K., Khandelwal D.P., Bist H.D. Librational modes of crystal water in hydrated solids. Applied Spectroscopy Reviews, 1980, vol. 16, no. 1, pp. 43–134. DOI: 10.1080/05704928008081709

[13] Groth V.P. Chemische krystallographie. Leipzig, W. Engelmann, 1906. 325 p.

[14] Krishnamurti D. The Raman and infrared spectra of some solid hydroxides. Part III. Discussion of the infrared data. Proc. of the Indian Academy of Sciences — Section A, 1959, vol. 50, iss. 4, pp. 247–253. DOI: 10.1007/BF03048860

[15] Hase Y. Raman spectroscopic study of four isotopically substituted lithium hydroxide monohydrates. Chemical Monthly, 1981, vol. 112, iss. 1, pp. 73–82. DOI: 10.1007/BF00906244

[16] Tyutyunnik V.I. Lithium hydroxide monohydrate single crystals: Infrared reflectivity and Raman study. Journal of Raman Spectroscopy, 2000, vol. 31, iss. 7, pp. 559–563. DOI: 10.1002/1097-4555(200007)31:7<559::AID-JRS577>3.0.CO;2-O

[17] Parker S.F., Refson K., Bewley R.I., Dent G. Assignment of the vibrational spectra of lithium hydroxide monohydrate, LiOH·H2O. Journal of Chemical Physics, 2011, vol. 134, iss. 8, pp. 084503–084503-7. DOI: 10.1063/1.3553812

[18] Gorelik V.S., Litvinova A.O., Umarov M.F. Fiber-optic measurements of secondary emission spectra of molecular compounds. Bulletin of the Lebedev Physics Institute, 2014, vol. 41, iss. 11, pp. 305–309. DOI: 10.3103/S1068335614110013

[19] Pepinsky R. Crystal structure of lithium hydroxide monohydrate. Crystalline Materials, 1940, vol. 102, no. 1-6, pp. 119–131. DOI: 10.1524/zkri.1940.102.1.119

[20] Lyubarskiy G.Ya. Teoriya grupp i ee primenenie v fizike [Group theory and its application in physics]. Moscow, Fizmatgiz Publ., 1958. 354 p.