|

Narrow-Band Filters in the Visible Spectral Range Based on Porous Photonic Crystal

Authors: Gorelik V.S., Yashin M.M. Published: 12.10.2016
Published in issue: #5(68)/2016  
DOI: 10.18698/1812-3368-2016-5-105-114

 
Category: Physics | Chapter: Crystallography, Physics of Crystals  
Keywords: photonic crystal, stop-band, reflection, narrow-band filter, pores, reflectance, nanoglobuls

We studied the secondary radiation produced in synthetic opal matrices under the influence of laser light at a given wavelength. This article presents the results of our experimental and theoretical studies of three-dimensional photonic crystal-based nanoglobul silica. We compared the experimental and theoretical approaches and determined the parameters of a narrow-band filter involving the use of a globular photonic crystal. We established the dependence of the contraction stop band on the ratio of the refractive indices of the two media n1 and n2 of a three-dimensional opal matrix.

References

[1] Hayman R. Filters. London & Boston, Focal Press, 1984.

[2] Yaroslavskiy L.P., Merzlyakov N.S. Metody tsifrovoy golografii [Methods of digital holography]. Moscow, Nauka Publ., 1977. 192 p.

[3] Iofis E.A. Fotokinotekhnika [Photographic and cinematographic technology]. Moscow, Sov. Entsiklopediya Publ., 1981. 447 p.

[4] Weston Chris. Mastering filters for photography. Switzerland, Mies, Rotovision, 2009.

[5] Carr P. N4PC: How to build the "Synthetic" crystal filter. 1990. Ех. 215, p. 18.

[6] Podgornyy I. N4PC: Low-pass filter. Radiolyubitel, 1996, no. 2, p. 29 (in Russ.).

[7] Popov S.I. The active low-frequency CW/Notch-filter. Radio-Design, 1993, no. 1, pp. 6-10 (in Russ.).

[8] Gorelik V.S. Optical and dielectric properties of nanostructured photonic crystals loaded by ferroelectrics and metals. Physics of the Solid State, 2009, vol. 51, iss. 7, pp. 1321-1327. DOI: 10.1134/S1063783409070014

[9] Belotelov V.I., Zvezdin A.K. Fotonnye kristally i drugie metamaterialy [Photonic crystals and other metamaterials]. Moscow, Byoro Kvantum Publ., 2006. 140 p.

[10] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 1987, no. 58, p. 2059.

[11] Blokhin S.A., Usov O.A. Optical studies of a two-dimensional photonic crystal with the InAs/InGaAs quantum-dot structure as an active region. Semiconductors, 2006, vol. 40, no. 7, pp. 812-817. DOI: 10.1134/S1063782606070141

[12] Ivchenko E.L., Poddubnyy A.N. Resonant three-dimensional photonic crystals. Physics of the Solid State, 2006, iss. 3, vol. 48, pp. 581-588. DOI: 10.1134/S1063783406030279

[13] Voynov Yu.P., Gorelik V.S., Zlobina L.I., Filatov V.V. Reflectivity spectra of gold- and silver-infiltrated opals. Inorganic Materials, 2009, vol. 45, no. 10, pp. 1133-1138. DOI: 10.1134/S0020168509100100

[14] Filatov V.V., Gorelik V.S. Dispersion relation of acoustic waves in phononic crystals filled with dielectric or metal. Bulletin of the Lebedev Physics Institute, 2010, vol. 37, no. 2, pp. 56-57. DOI: 10.3103/S1068335610020053

[15] Gorelik V.S., Pudovkin A.V. Resonance globular photonic crystals filled with Al2O3:(Cr3+) nanoparticles. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2013, no. 2, pp. 43-49 (in Russ.).

[16] Gorelik V.S., Voshchinskiy E.A. Conversional light reflectance from the surface of globular photonic crystals. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2012, no. 3, pp. 20-30 (in Russ.).

[17] Bykov V.P. Spontaneous emission in a periodic Structure. Journal of Experimental and Theoretical Physics, 1972, vol. 35, iss. 2, pp. 269-273.

[18] Berestetskiy V.B., Lifshits E.M., Pitaevskiy L.P. Teoreticheskaya fizika. T. IV. Kvantovaya elektrodinamika [Theory of physics. Vol. IV. Quantum electrodynamics]. Moscow, Fizmatlit Publ., 2002. 720 p.