|

Non-Linear Constitutive Equations for Transversely Isotropic Materials Belonging to the С and С∞h Symmetry Groups

Authors: Tsvetkov S.V. Published: 21.06.2019
Published in issue: #3(84)/2019  
DOI: 10.18698/1812-3368-2019-3-46-59

 
Category: Physics | Chapter: Condensed Matter Physics  
Keywords: transverse isotropy, structural symmetry, tensor functions, invariants, symmetry principle, transversely isotropic material

Transversely isotropic materials feature infinite-order symmetry axes. Depending on which other symmetry elements are found in the material structure, five symmetry groups may be distinguished among transversely isotropic materials. We consider constitutive equations for these materials. These equations connect two symmetric second-order tensors. Two types of constitutive equations describe the properties of these five material groups. We derived constitutive equations for materials belonging to the C and C∞h symmetry groups in the tensor function form. To do this, we used corollaries of Curie's Symmetry Principle. This makes it possible to obtain a fully irreducible form of the tensor function

References

[1] Georgievskiy D.V. Tensor-nonlinear effects at isothermal deformation of continuum media. Uspekhi mekhaniki, 2002, no. 2, pp. 150–176 (in Russ.).

[2] Georgievskii D.V. Potentiality of isotropic nonlinear tensor functions relating two deviators. Mech. Solids, 2016, vol. 51, iss. 5, pp. 619–622. DOI: 10.3103/S0025654416050162

[3] Boehler J.P. A simple derivation of representation for non-polynomial constitutive equations in some cases of anisotropy. ZAMM, 1979, vol. 59, iss. 4, pp. 157–167. DOI: 10.1002/zamm.19790590403

[4] Kiral E., Smith G.F. On the constitutive relations for anisotropic materials triclinic, monoclinic, rombic, tetragonal and crystal systems. Int. J. Eng. Sci., 1974, vol. 12, iss. 6, pp. 471–490. DOI: 10.1016/0020-7225(74)90065-2

[5] Smith G.F. Anisotropic constitutive expressions. In: Boehler J.P. (eds). Mechanical Behavior of Anisotropic Solids / Comportment Mechanique des Solides Anisotropes. Dordrecht, Springer, 1982, pp. 27–34. DOI: https://doi.org/10.1007/978-94-009-6827-1_2

[6] Spencer A.J.M. The formulation of constitutive equation for anisotropic solids. In: Boehler JP. (eds). Mechanical Behavior of Anisotropic Solids / Comportment Mechanique des Solides Anisotropes. Dordrecht, Springer, 1982, pp. 3–26. DOI: https://doi.org/10.1007/978-94-009-6827-1_1

[7] Boehler J.P., Sawczuk A. On yielding of oriented solids. Acta Mechanica, 1977, vol. 27, iss. 1-4, pp. 185–204. DOI: 10.1007/BF01180085

[8] Pobedrya B.E. On plasticity theory of transversally isotropic materials. Izv. AN SSSR. Mekhanika tverdogo tela, 1990, no. 3, pp. 96–101 (in Russ.).

[9] Green A.E. A continuum theory of anisotropic fluid. Math. Proc. Camb. Philos. Soc., 1964, vol. 60, iss. 1, pp. 123–128. DOI: 10.1017/S0305004100037531

[10] Zheng Q.-S. Theory of representation tensor functions --- a unified invariant approach to constitutive equations. Appl. Mech. Rev., 1994, vol. 47, iss. 11, pp. 545–587. DOI: 10.1115/1.3111066

[11] Spencer A.J.M. Theory of invariants. Continuum physics. Vol. 1. P. III. Theory of invariants. Department of Theoretical Mechanics University of Nottingham, 1971.

[12] Sirotin Yu.I., Shaskolskaya M.P. Osnovy kristallofiziki [Fundamentals of crystallophysics]. Moscow, Nauka Publ., 1979.

[13] Shubnikov A.V. On symmetry of vectors and tensors. Izv. AN SSSR. Seriya fizicheskaya, 1949, vol. 13, no. 3, pp. 347–375 (in Russ.).

[14] Zheludev I.S. Symmetry of scalars, vectors and second-rank tensor. Kristallografiya, 1957, vol. 2, no. 2, pp. 207–216 (in Russ.).

[15] Dimitrienko Yu.I. Tenzornyy analiz [Tensor analysis]. Moscow, BMSTU Publ., 2011.

[16] Curie P. Izbrannye trudy [Selectas]. Moscow, Nauka Publ., 1966.

[17] Zheng Q.-S. On transversely isotropic, orthotropic and relative isotropic function of symmetric tensors, skew-symmetric tensors and vectors. Part II: The representations for three dimensional transversely isotropic functions. Int. J. Eng. Sci., 1993, vol. 31, iss. 10, pp. 1425–1433. DOI: 10.1016/0020-7225(93)90007-H

[18] Lokhin V.V., Sedov L.I. Nonlinear tensor functions of several tensor arguments. J. Appl. Math. Mech., 1963, vol. 27, iss. 3, pp. 597–629. DOI: 10.1016/0021-8928(63)90149-7

[19] Lokhin V.V. Kovariantnaya forma tselogo ratsionalnogo bazisa polinomialnykh invariantov simmetrichnogo tenzora vtorogo ranga [Covariant form of integral rational basis of second rank symmetrical tensor invariants]. Problemy sovremennoy mekhaniki [Problems of Modern Mechanics]. Moscow, MSU Publ., 1998, pp. 91–99 (in Russ.).

[20] Bruhns O., Xiao H., Meyers A. On representations of yield functions for crystals, quasicrystals, and transversely isotropic solids. Eur. J. Mech. A Solids, 1999, vol. 18, iss. 1, pp. 47–67. DOI: 10.1016/S0997-7538(99)80003-5

[21] Tsvetkov S.V. Strength criteria of transversally-isotropic materials of different classes of structure symmetry. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2009, no. 4, pp. 86–99 (in Russ.).