Critical Behaviour in Systems in which Long-Range and Short-Range Forces Compete

Authors: Belim S.V. Published: 19.02.2019
Published in issue: #1(82)/2019  
DOI: 10.18698/1812-3368-2019-1-37-47

Category: Physics | Chapter: Condensed Matter Physics  
Keywords: second-order phase transition, critical phenomena, long-range effects, field theory approach

Critical behaviour of a range of ferromagnetic materials deviates from the predictions of the Ising, XY and Heisenberg models. Additional long-range forces competing with regular exchange interaction may explain this deviation. These competing interactions lead to new universality classes of critical behaviour. The paper uses the field theory approach to investigate critical behaviour in those systems in which long-range and short-range forces compete. We consider the case when a power function of distance r-D-σ, when 1.5 < σ < 2.0, can describe the long-range forces. There exists a distinctive critical behaviour mode for these values. We derived vertex functions using a two-loop approximation directly in three-dimensional space (D = 3) and, for all values, obtained a linear approximation of asymptotic series in terms of long-range interaction parameters. We applied the Pade --- Borel summation technique to these asymptotic series. We computed stable fixed points and critical exponents as functions of long-range interaction parameters for low relativeefficiency of the long-range interaction. We investigated how critical exponents depend on the factor in the power law and relative long-range interaction intensity. We compared our results to the critical exponent values found experimentally for manganites. We used the experimental critical exponent γ values to compute long-range interaction parameters and then used the long-range interaction parameters to derive the ß exponent values, which we then compared to the experimental values. We show good agreement between our theoretical results and experimental data


[1] Mnassri R., Khelifi M., Rahmouni H., et al. Study of physical properties of cobalt substituted Pr0.7Ca0.3MnO3 ceramics. Ceram. Int., 2016, vol. 42, iss. 5, pp. 6145–6153. DOI: 10.1016/j.ceramint.2016.01.001

[2] Bettaibi A., Mnassri R., Selmi A., et al. Effect of chromium concentration on the structural, magnetic and electrical properties of praseodymium-calcium manganite. J. Alloys Compd., 2015, vol. 650, pp. 268–276. DOI: 10.1016/j.jallcom.2015.05.161

[3] Lampen P., Puri A., Phan M.-H., et al. Structure, magnetic and magnetocaloric properties of amorphous and crystalline La0.4Ca0.6MnO3+δ nanoparticles. J. Alloys Compd., 2012, vol. 512, iss. 1, pp. 94–99. DOI: 10.1016/j.jallcom.2011.09.027

[4] Mnassri R., Chniba-Boudjada N., Cheikhrouhou A. Impact of sintering temperature on the magnetic and magnetocaloric properties in Pr0.5Eu0.1Sr0.4MnO3 manganites. J. Alloys Compd., 2015, vol. 626, pp. 20–28. DOI: 10.1016/j.jallcom.2014.11.141

[5] Zhong W., Chen W., Au C.T., et al. Dependence of the magnetocaloric effect on oxygen stoichiometry in polycrystalline La2/3Ba1/3MnO3–δ. J. Magn. Magn. Mater., 2003, vol. 261, iss. 1-2, pp. 238–243. DOI: 10.1016/S0304-8853(02)01479-8

[6] Mnassri R., Cheikhrouhou A. Evolution of magnetocaloric behavior in oxygen deficient La2/3Ba1/3MnO3–δ manganites. J. Supercond. Nov. Magn., 2014, vol. 27, iss. 6, pp. 1463–1468. DOI: 10.1007/s10948-013-2459-y

[7] Miao J.H., Yuan S.L., Ren G.M., et al. Effect of sintering temperature on electrical transport of La0.67Ca0.33MnO3 granular system with 4 % CuO addition. J. Alloys Compd., 2008, vol. 448, iss. 1-2, pp. 27–31. DOI: 10.1016/j.jallcom.2006.10.033

[8] Saadaoui F., Mnassri R., Omrani H., et al. Critical behavior and magnetocaloric study in La0.6Sr0.4CoO3 cobaltite prepared by a sol–gel process. RSC Adv., 2016, iss. 56, pp. 50968–50977. DOI: 10.1039/C6RA08132K

[9] Nagaev E.L. Colossal-magnetoresistance materials: manganites and conventional ferromagnetic semiconductors. Phys. Rep., 2001, vol. 346, iss. 6, pp. 387–531. DOI: 10.1016/S0370-1573(00)00111-3

[10] Dagotto E., Hotta T., Moreo A. Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep., 2001, vol. 344, iss. 1-2, pp. 1–153. DOI: 10.1016/S0370-1573(00)00121-6

[11] Fisher M.E., Ma S.-K., Nickel B.G. Critical exponents for long-range interactions. Phys. Rev. Lett., 1972, vol. 29, iss. 14, pp. 917–920. DOI: 10.1103/PhysRevLett.29.917

[12] Luijten E., Blote H.W.J. Classical critical behavior of spin models with long-range interactions. Phys. Rev. B, 1997, vol. 56, iss. 14, pp. 8945–8958. DOI: 10.1103/PhysRevB.56.8945

[13] Belim S.V. Influence of long-range effects on the critical behavior of three-dimensional systems. Jetp Lett., 2003, vol. 77, iss. 2, pp. 112–114. DOI: 10.1134/1.1564231

[14] Belim S.V. Effect of long-range interactions on the critical behavior of three-dimensional disordered systems. Jetp Lett., 2003, vol. 77, iss. 8, pp. 434–437. DOI: 10.1134/1.1587179

[15] Bayong E., Diep H.T. Effect of long-range interactions on the critical behavior of the continuous Ising model. Phys. Rev. B, 1999, vol. 59, iss. 18, pp. 11919–11924. DOI: 10.1103/PhysRevB.59.11919

[16] Luijten E. Test of renormalization predictions for universal finite-size scaling functions. Phys. Rev. E, 1999, vol. 60, iss. 6, pp. 7558–7561. DOI: 10.1103/PhysRevE.60.7558

[17] Belim S.V., Larionov I.B., Soloneckiy R.V. Computer simulation of the critical behavior of magnetic systems with competition between the short- and long-range interactions. Phys. Metals Metallogr., 2016, vol. 117, iss. 11, pp. 1079–1084. DOI: 10.1134/S0031918X1611003X

[18] Yu B., Sun W., Fan J., et al. Scaling study of magnetic phase transition and critical behavior in Nd0.55Sr0.45Mn0.98Ga0.02O3 manganite. Mater. Res. Bull., 2018, vol. 99, pp. 393–397. DOI: 10.1016/j.materresbull.2017.11.037

[19] Cherif R., Hlil E.K., Ellouze M., et al. Critical phenomena in La0.6Pr0.1Sr0.3MnO3 perovskite manganite oxide. J. Solid State Chem., 2015, vol. 229, pp. 26–31. DOI: 10.1016/j.jssc.2015.04.039

[20] Ben Khlifa H., Mnassri R., Tarhouni S., et al. Critical behaviour and filed dependence of magnetic entropy change in K-doped manganites Pr0.8Na0.2--xKxMnO3 (x = 0.10 and 0.15). J. Solid State Chem., 2018, vol. 257, pp. 9–18. DOI: 10.1016/j.jssc.2017.09.013