|

Structure, Morphology and Photoelectric Properties of n-GaAs--p-(GaAs)1--x(Ge2)х Heterostructure

Authors: Zaynabidinov S.Z., Saidov A.S., Boboev A.Y., Abdurahimov D.P. Published: 19.02.2022
Published in issue: #1(100)/2022  
DOI: 10.18698/1812-3368-2022-1-72-87

 
Category: Physics | Chapter: Condensed Matter Physics  
Keywords: liquid-phase epitaxy, X-ray diffraction pattern, substrate, film, sphalerite, nanocone, photosensitivity

Abstract

The paper studies the structural properties of the thin-film (GaAs)1--х(Ge2)x solid solutions grown by liquid-phase epitaxy on single crystal GaAs substrates. The obtained epitaxial layers were 10 μm thick, had a 0.17 Ω · cm resistivity of p-type conductivity. X-ray diffraction analysis showed that the obtained films are monocrystalline with nanoinclusions with block sizes up to 49 nm, with a crystallographic orientation (100), and have a sphalerite structure of the ZnS type. Morphological studies using AFM showed that the nanocones on the surface of the epitaxial (GaAs)1--х(Ge2)x layers are due to Ge atoms in them. The analysis revealed that the diameter of the nanocones' bases is in the range from 70 to 90 nm, and the height is from 3 to 12 nm. The sizes of such nanocones, determined by the X-ray diffraction method, were close to these values. The photosensitivity spectra of these solid solutions exhibit peculiar fluctuations due to various complexes of charged atoms in them. Analysis of the photosensitivity spectrum of n-GaAs--p-(GaAs)1--х(Ge2)x heterostructures using the Wolfram Mathematics 7 program showed that the spectrum consists of three peaks due to As--Ge, Ge--Ge and Ga--Ge

This work was supported by the Committee for Coordination Science and Technology Development under the Cabinet of Ministers of the Republic of Uzbekistan (grant no. F2-68)

Please cite this article in English as:

Zaynabidinov S.Z., Saidov A.S., Boboev A.Y., et al. Structure, morphology and photoelectric properties of n-GaAs-p-(GaAs)1--x(Ge2)x heterostructure. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2022, no. 1 (100), pp. 72--87 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2022-1-72-87

References

[1] Moiseev K.D., Parkhomenko Ya.A., Gushchina E.V., et al. Specific features of the epitaxial growth of narrow-gap InSb quantum dots on an InAs substrate. Semiconductors, 2009, vol. 43, no. 8, pp. 1102--1109. DOI: https://doi.org/10.1134/S1063782609080259

[2] Saidov A.S., Usmonov Sh.N., Amonov K.A., et al. Photosensitivity of pSi-n(Si2)1--x--y(Ge2)x(ZnSe)y heterostructures with quantum dots. Appl. Sol. Energy, 2017, vol. 53, no. 4, pp. 287--290. DOI: https://doi.org/10.3103/S0003701X17040132

[3] Ravdelya A.A., Ponomareva A.M. Kratkiy spravochnik fiziko-khimicheskikh velichin [Brief handbook on physical-chemical figures]. St. Petersburg, Ivan Fedorov Publ., 2003.

[4] Zaynabidinov S.Z., Saidov A.S., Leiderman A.Yu., et al. Growth, structure, and properties of GaAs-based (GaAs)1--x--y(Ge2)x(ZnSe)y epitaxial films. Semiconductors, 2016, vol. 50, no. 1, pp. 59--65. DOI: https://doi.org/10.1134/S1063782616010231

[5] Boboev A.Y., Khamraeva P.N., Rustamova V.M. [Formation of Gc and ZnSe nanocrystals in (GaAs)1--x--y(Ge2)x(ZnSe)y epitaxial film]. Mater. 52-y Mezhdunar. nauch. stud. konf. "Fizicheskie metody v estestvennykh naukakh" [Proc. 52 Int. Sci. Student Conf. Physical Methods in Natural Sciences]. Novosibirsk, NGU, 2014, pp. 10--11 (in Russ.).

[6] Shul’pina I.L., Kyutt R.N., Ratnikov V.V., et al. X-ray diffraction diagnostics methods as applied to highly doped semiconductor single crystals. Tech. Phys., 2010, vol. 55, no. 4, pp. 537--545. DOI: https://doi.org/10.1134/S1063784210040183

[7] Gorelik S.S., Rastorguev L.N., Skakov Yu.A. Rentgenograficheskiy i elektronno-opticheskiy analiz [X-ray and electro-optical analysis]. Moscow, Metallurgiya Publ., 1970.

[8] Fetisov G.V. Sinkhrotronnoe izluchenie. Metody issledovaniya struktury veshchestv [Synchrotron emission. Research methods for materials structure]. Moscow, FIZMATLIT Publ., 2007.

[9] Sharenkova N.V., Kaminskii V.V., Petrov S.N. Sizes of X-ray radiation coherent domains in thin SmS films and their visualization. Tech. Phys., 2011, vol. 56, no. 9, art. 1363. DOI: https://doi.org/10.1134/S1063784211090209

[10] Medvid A., Onufrijevs P., Jarimaviciute-Gudaitiene R., et al. Formation mechanisms of nano and microcones by laser radiation on surfaces of Si, Ge, and SiGe crystals. Nanoscale Res. Lett., 2013, vol. 8, no. 1, art. 264. DOI: https://doi.org/10.1186/1556-276X-8-264

[11] Dubrovskiy V.G. Teoriya formirovaniya epitaksial’nykh nanostruktur [Theory of epitaxial nanostructures formation]. Moscow, FIZMATLIT Publ., 2009.

[12] Boboev A.Y., Usmonov J.N., Makhmudov Kh.А., et al. Photoelectric propertiesn-GaAs--p-(GaAs)1--x(Ge2)хheterostructures with germanium nanocrystals. Nauchnyy vestnik NamGU, 2020, iss. 1, pp. 58--63 (in Russ.).

[13] Khludkov S.S. Diffusion of impurities in GaAs, diffusion structures and devices. Vestnik Tomskogo gosudarstvennogo universiteta [Tomsk State University Journal], 2005, no. 285, pp. 84--94 (in Russ.).

[14] Saidov M.S. Low-temperature crystallization of semiconductor solid solutions that are promising for the realization of the extrinsic thermo photovoltaic effect. Appl. Sol. Energy., 2007, vol. 43, no. 1, pp. 45--48. DOI: https://doi.org/10.3103/S0003701X0701015X

[15] Zhuravlev K.S., Chikichev S.I., Shtaske R., et al. Study on complexing in epitaxial heavily-doped p-GaAs:Ge by a photoluminescence method. Fizika i tekhnika poluprovodnikov, 1990, vol. 24, no. 9, pp. 1645--1649 (in Russ.).

[16] Aleshkin V.Ya., Dubinov A.A., Kudryavtsev K.E., et al. 1.3 μm Photoluminescence of Ge/GaAs multi-quantum-well structure. J. Appl. Phys., 2014, vol. 115, iss. 4, art. 043512. DOI: https://doi.org/10.1063/1.4863121

[17] Khvostikov V.P., Lunin L.S., Ratushnyy V.I., et al. Photomaker based on GaAs/Ge heterostructure obtained by low-temperature liquid phase epitaxy method. Pis’ma v ZhTF, 2003, vol. 29, no. 14, pp. 46--49 (in Russ.).