Gas-dynamic processes influence on combustion evolution close to concentration flammability limits

Authors: Ivanov M.F., Kiverin A.D., Yakovenko I.S. Published: 24.12.2015
Published in issue: #6(63)/2015  
DOI: 10.18698/1812-3368-2015-6-85-98

Category: Physics | Chapter: Chemical Physics, Combustion and Explosion, Physics of the Substance Extreme States  
Keywords: combustion gas dynamics, combustion stability, combustion concentration limits, direct numerical modelling

The paper considers numerically the influence of gas-dynamic processes on combustion propagation within the enclosed volumes filled with low active gaseous fuel-air mixtures close to the concentration flammability limit. The authors identify some physical mechanisms determining both the flame propagation instability and the formation of modes with a cellular nature of flammable mixture combustion. Of special interest is a buoyancy of hot combustion products in the gravity field, as well as the convective instability being developed during this process. On the one hand, the convective instability provides both the stratification of unburnt mixtures and the formation of depletion regions, which prevent the mixture from being completely burnt out. On the other hand, it can result in forming hot thermals in the mixtures with undercritical composition. It is of primary concern for fire- and explosion safety.


[1] Mitigation of Hydrogen Hazards in Severe Accidents in Nuclear Power Plants, IAEA-TECDOC-1661, IAEA, Vienna, 2011.

[2] Auban O., Zboray R., Paladino D. Investigation of large-scale gas mixing and stratification phenomena related to LWR containment studies in the PANDA facility. Nuclear Engineering and Design, vol. 237, iss. 4, pp. 409-419.

[3] Lewis Bernard, Von Elbe Guenther. Combustion, Flames and Explosions of Gases. New York & London, Academic Press, 1961.

[4] Peraldi O., Knystautas R., Lee J.H.S. Criteria for transition to detonation in tubes. Proc Comb. Inst., 1986, vol. 21, pp. 1629.

[5] Ivanov M.F., Kiverin A.D., Smygalina A.E. Ignition of hydrogen-air mixture near lower flammability limit. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2013, no. 1, pp. 89-108 (in Russ.).

[6] Coward H.F., Jones G.W. Limits of flammability of gases and vapors. Bulletin 503. US Bureau of Mines, 1952.

[7] Cashdollar K.L., Zlochower I.A., Green G.M., Thomas R.A., Hertzberg M. Flammability of methane, propane, and hydrogen gases. Journal of Loss Prevention in the Process Industries, 2000, vol. 13, iss. 3-5, pp. 327-340.

[8] SAFEKINEX Report on the experimentally determined explosion limits, explosion pressures and rates of explosion pressure rise. Federal Institute for Materials Research and Testing (BAM), 2002.

[9] Dahoe A.E. Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions. J. of Loss Prevention in the Process Industries, 2005. vol. 18,pp. 152-166.

[10] Kumar R.K. Flammability limits of hydrogen-oxygen-diluent mixtures. J. Fire. Sci., 1985, vol. 3, pp. 245-262.

[11] Medvedev S.P., Gel’fand B.E., Polenov A.N., Khomik S.V. Flammability Limits for Hydrogen. Fizika goreniya i vzryva [Combustion, Explosion, and Shock Waves], 2002, no. 4, pp. 3-8 (in Russ.).

[12] Baratov A.N., Korol’chenko A.Ya., Kravchuk G.N. Pozharovzryvobezopasnost’ veshchestv i materialov i sredstva ikh tusheniya. V 2 kn. Kn. 1 [Fire and Explosion Safety of Substances and Materials and Means of Their Extinguishing]. Moscow, Khimiya Publ., 1990. 496 p.

[13] Warnatz J., Maas U., Dibble R.W. Combustion: physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation. 4th Ed. Berlin, Heidelberg, N.Y., Springer, 2006. 389 p.

[14] Ivanov M.F., Kiverin A.D., Liberman M.A. Flame acceleration and DDT of hydrogen-oxygen gaseous mixtures in channels with no-slip walls. Int. Journ. Hydrogen Energy, 2011, vol. 36, pp. 7714-7727.

[15] Hirschfelder J., Curtiss C.F., Byrd R.B. The Molecular Theory of Liquids and Gases. 2nd ed. N.Y., Joun Wiley & Sons, 1974.

[16] McBride B.J., Gordon S., Reno M.A. Coefficients for calculating thermodynamic and transport properties of individual species. NASA Technical Memorandum 4513, 1993. 89 p.

[17] Wu F. et. al. Uncertainty in stretch extrapolation of laminar flame speed from expanding spherical flames. Proc. Comb. Inst., 2015, vol. 35, iss. 1, pp. 663-670.

[18] Belotserkovskiy O.M., Davydov Yu.M. Metod krupnykh chastits v gazovoy dinamike. Vychislitel’nyy eksperiment [Method of Large Particles in Gas Dynamics. Computer experiment]. Moscow, Nauka Publ., 1982.

[19] Ivanov M.F., Kiverin A.D., Klumov B.A., Fortov V.E. From combustion and detonation to nitrogen oxides. Physics-Uspekhi, 2014, vol. 57, pp. 234-249.

[20] Kiverin A.D., Kassoy D.R., Ivanov M.F., Liberman M.A. Mechanisms of ignition by transient energy deposition: regimes of combustion waves propagation. Phys. Rev. E, 2013, vol. 87 (3), pp. 033015 (10).

[21] Ivanov M.F., Kiverin A.D., Liberman M.A. Ignition of deflagration and detonation ahead of the flame due to radiative preheating of suspended micro particles. Comb. Flame, 2015. D0I:10.1016/j.combustflame.2015.06.018

[22] Ivanov M.F., Kiverin A.D., Gal’burt V.A. About One Method of Acceleration of Transition from Deflagration to Detonation in Gaseous Inflammable Mixtures. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2008, no. 4, pp. 38-45 (in Russ.).

[23] Ivanov M.F., Kiverin A.D., Rykov Yu.V. Peculiarities of Flame Propagation in Closed Volumes. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2010, no. 1, pp. 21-38 (in Russ.).

[24] Gel’fand B.E., Popov O.E., Chayvanov B.B. Vodorod: parametry goreniya i vzryva [Hydrogen: Parameters of Combustion and Explosion]. Moscow, Fizmatlit Publ., 2008. 288 p.

[25] Levich V.G. Fiziko-khimicheskaya gadrodinamika [Physico-Chemical Hadrodynamics]. Moscow, Fizmatlit Publ., 1959. 699 p.

[26] Nakoryakov V.E., Pokusaev B.G., Shreyber I.R. Volnovaya dinamika gazo- i parozhidkostnykh sred [Wave Dynamics of Gas and Vapor-Liquid Media]. Moscow, Energoatomizdat Publ., 1990. 248 p.

[27] Peters N. Laminar Flamelet Concepts in Turbulent Combustion. 21st Symposium (International) on Combustion, Combustion Institute, Pittsburgh, 1986, pp. 1231-1256.