Abnormal propagation of flame in combustible gas suspensions

Authors: Ivanov M.F., Kiverin A.D., Pinevich S.G. Published: 15.10.2015
Published in issue: #5(62)/2015  
DOI: 10.18698/1812-3368-2015-5-51-68

Category: Physics | Chapter: Chemical Physics, Combustion and Explosion, Physics of the Substance Extreme States  
Keywords: combustion, detonation, gas suspension, thermal radiation, direct numerical simulation

The paper discusses peculiarities of flame propagation in chemically active gas mixtures containing chemically inactive microparticles. In order to determine the influence of thermal radiation of combustion products on flame propagation in the dispersive medium, the authors compare the results obtained both with and without considering thermal radiation transmission. In the first case, the particles transfer heat energy to the neighboring combustible gas while absorbing the radiation. In case of uniform distributions of particles in a mixture, the radiation absorbed near the flame propagation front increases the flame speed by raising the temperature at the front, yet not changing the combustion regime. However, non-uniform distributions of particles create the condition when the radiation absorption can result in either remote gas ignition or detonation in the area of high particle concentration. In case of denotation, its location entirely depends on spatial distributions of microparticles and can occur far away from the original flame front. Only the heat time and positional mixture ignition determine the speed of flame propagation in the mixture from the current position to the nearest area of high particle concentration (the area of intensive radiation absorption). The speed can be arbitrarily high.


[1] Varaksin A.Yu. Turbulentnoe techenie gazov s tverdymi chastitsam [Turbulent Flow of Gases with Solid Particles]. Moscow, Fizmatlit Publ., 2003. 192 p.

[2] Volkov E.P., Zaychik L.I., Pershukov V.A. Modelirovanie goreniya tverdogo topliva [Modeling of Solid Fuel Combustion]. Moscow, Nauka Publ., 1994. 320 p.

[3] Zaychik L.I., Alipchenkov V.M. Statisticheskie modeli dvizheniya chastits v turbulentnoy zhidkosti [Statistical Models of the Particle Motion in a Turbulent Fluid]. Moscow, Fizmatlit Publ., 2007. 312 p.

[4] Volkov K.N., Emel’yanov V.N. Techenie gaza s chastitsami [The Flow of Gas with Particles]. Moscow, Fizmatlit Publ., 2008. 598 p.

[5] Nigmatulin R.I. Dinamika mnogofaznykh sred. Ch. 1 [The Dynamics of Multiphase Media. Part 1]. Moscow, Nauka Publ., 1987. 464 p.

[6] Zel’dovich Ya.B., Rayzer Yu.P. Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavleniy [Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena]. Moscow, Nauka Publ., 1966. 688 p.

[7] Warnatz J., Maas U., Dibble R.W. Combustion. Berlin, Springer-Verlag, 2006. 351 p.

[8] Belotserkovskiy O.M., Davydov Yu.M. Metod krupnykh chastits v gazovoy dinamike [Method of Large Particles in Gas Dynamics]. Moscow, Nauka Publ., 1982.

[9] Ivanov M.F., Kiverin A.D., Liberman M.A. Hydrogen-Oxygen Flame Acceleration Antransition to Detonation in Channels with No-Slip Walls for a Detailed Chemical Reaction Model. Phys. Rev. E., 2011, vol. 83, pp. 056313-1-056313-16.

[10] Ivanov M.F., Kiverin A.D., Liberman M.A. Flame Acceleration and DDT of Hydrogeneoxygen Gaseous Mixtures in Channels with No-Slip Walls. Intl. Journ. Hydrogen Energy, 2011, vol. 36, pp. 7714-7727.

[11] Ivanov M.F., Kiverin A.D., Liberman M.A., Yakovenko I.S. Hydrogen-Oxygen Flame Acceleration and Deflagration-to-Detonation Transition in Three-Dimensional Rectangular Channels with No-Slip Walls. Intl. Journ. Hydrogen Energy, 2013, vol. 38. 36, pp. 16427-16440.

[12] Ivanov M.F., Kiverin A.D. Influence of Air-Fuel Ratio on the Development of the Flame Front Instability. Khim. Fiz [Russ. J. Phys. Chem. B.], 2010, vol. 29, no. 2, pp. 48-54 (in Russ.).

[13] Ivanov M.F., Kiverin A.D., Gal’burt V.A. About One Method of Acceleration of Transition from Deflagration to Detonation in Gaseous Inflammable Mixtures. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2011, no. 2, pp. 16-24 (in Russ.).

[14] Ivanov M.F., Kiverin A.D., Rykov Yu.V. Peculiarities of Flame Propagation in Closed Volumes. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2010, no. 1, pp. 21-38 (in Russ.).

[15] Ivanov M.F., Kiverin A.D., Smygalina A.Ye. Ignition of hydrogen-air mixture near lower flammability limit. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2013, no. 1, pp. 89-108 (in Russ.).

[16] Kuznetsov M., Alekseev V., Matsukov I., Dorofeev S. DDT in a Smooth Tube Filled with a Hydrogen-Oxygen Mixture. Shock Waves, 2005, vol. 14, pp. 205-215.

[17] Иванов М.Ф., Киверин А.Д., Либерман М.А., Фортов В.Е. The Mechanism of Flame Acceleration and the Transition to Hydrogen-Oxygen Mixture Detonation in the Channel. Dokl. Akad. Nauk [Proc. of the Academy of Sciences], 2010, vol. 434, no. 6. pp. 756-759 (in Russ.).

[18] Ivanov M.F., Kiverin A.D., Smygalina A.E., Yakovenko I.S. The Role of Chemically Neutral Micro-Particles in the Development of Gas Suspension Combustion: from Detonation Suppressing to Implanting Impurities in the Substrate. Sb. Tr. Vseros. Konf. "Mekhanika i nanomekhanika strukturno-slozhnykh i geterogennykh sred. Uspekhi, problemy, perspektivy" [Proc. All Russ. Conf. Mechanics and Nanomechanics of Structurally Complex and Heterogeneous Media. Achievements, Problems, Prospects.]. Moscow, 23 Dec. 2014-31 Jan. 2015. Moscow, IPRIM RAN Publ., 2015, pp. 161-171 (in Russ.).

[19] Ivanov M.F., Kiverin A.D., Liberman M.A. Ed. by Starik A.M., Frolov S.M. The Role of Heat Radiation in Combustion of Chemically Active Gas Suspensions. Advances in Nonequilibrium Processes, Plasma, Combustion, and Atmosphere, 2014, pp. 162-170.

[20] Zeldovich Ya.B. Regime Classification of an Exothermic Reaction with Nonuniform Initial Conditions. Combust. Flame, 1980, vol. 39, pp. 211-226.