|

Aerophysics of the Hypersonic Air Flow above Surface of Space Vehicle at Altitudes of less than 60 km

Authors: Surzhikov S.T. Published: 12.10.2016
Published in issue: #5(68)/2016  
DOI: 10.18698/1812-3368-2016-5-33-45

 
Category: Mechanics | Chapter: Mechanics of Liquid, Gas, and Plasma  
Keywords: aerophysics, reentry spacecraft, shock layer ionization, orbital entry into dense layers of atmosphere

This paper studies gas dynamics of reentry spacecraft at relatively low hypersonic speeds using numerical modeling. The investigated part of the trajectory has velocities of v ≈ 7…1 km/s and altitudes of H = 60…30 km. In this trajectory part the electron density in the compressed layer is very high to block radio signals. The article discusses the prospects of using electromagnetic actuators as aerophysical management techniques of gas flows.

References

[1] Djadkin A., Beloshitsky A., Shuvalov M., Surzhikov S. Nonequilibrium radiative gasdynamics of segmental-conical space vehicle of large size. AIAA, 2011-0453, 2011. 29 p.

[2] NASA’s exploration systems architecture. Final Report. NASA-TM-2005-214062. November 2005. 758 p.

[3] Olynick D.R., Chen Y.K., Tauber M.E. Aerodynamics of the Stardust sample return capsule. J. Spacecraft and Rockets, 1999, vol. 36, no. 3, pp. 442-462.

[4] Olynick D.R., Henline W.D., Hartung L.C., Candler G.V. Comparison of coupled radiative Navier - Stokes flow solutions with the project Fire-II flight data. AIAA 94-1955, 1994. 15 p.

[5] Lee D.B., Goodrich W.D. The aerodynamic environment of the Apollo command module during superorbital entry. NASA TN D-6792. April 1972. 80 p.

[6] Surzhikov S.T. Radiative gas dynamics of the Fire-II superorbital space vehicle. Technical Physics, 2016, vol. 61, iss. 3, pp. 349-359. DOI: 10.1134/S1063784216030208

[7] Surzhikov S.T. Radiation aerothermodynamics of the Stardust space vehicle. J. Appl. Math. Mech., 2016, vol. 80, iss. 1.

[8] Surzhikov S.T. Radiative gasdynamics of re-entry space vehicle of large size with superorbital velocity. AIAA paper 2015-0980, 2015. 32 p.

[9] Surzhikov S.T. Radiative gas dynamics of large superorbital space vehicle at angle of attack. AIAA 2016-0741, 2016. 20 p.

[10] Surzhikov S.T. Coupled radiative gasdynamic interaction and non-equilibrium dissociation for large-scale returned space vehicles. J. Chem. Phys., 2012, vol. 398, pp. 56-63.

[11] Surzhikov S.T. Two-dimensional numerical analysis of flow ionization in the RAM-C-II flight experiment. Russ. J. Phys. Chem. B, 2015, vol. 9, iss. 1, pp. 69-86. DOI: 10.1134/S1990793115010200

[12] Surzhikov S.T. The role of atomic lines in radiation heating of the experimental space vehicle Fire-II. Doklady Physics, 2015, vol. 60, no. 10, pp. 465-470. DOI: 10.1134/S1028335815100110

[13] Surzhikov S.T. Aerodynamics of the re-entry spacecraft Stardust within the hypersonic flight. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2016, no. 3, pp. 4-22 (in Russ.). DOI: 10.18698/0236-3941-2016-3-4-22

[14] Shang J., Kimmel R.L., Menart J., Surzhikov S.T. Hypersonic flow control using surface plasma actuator. J. of Propulsion and Power, 2008, vol. 24, no. 5, pp. 923-934.

[15] Shang J.S., Surzhikov S.T., Kimmel R., Gaitonde D., Menart J., Hayes J. Mechanisms of plasma actuators for hypersonic flow control. Progress in Aerospace Sciences, 2005, vol. 41, pp. 642-668.

[16] Surzhikov S.T. Analytical methods of building finite-difference mesh for computation of aerothermodynamics of descending spacecrafts. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2004, no. 2, pp. 24-50 (in Russ.).

[17] Surzhikov S.T. Radiatsionnaya gazovaya dinamika spuskaemykh kosmicheskikh apparatov. Mnogotemperaturnye modeli [Radiation gas dynamics of descent capsule. Multitemperature models]. Moscow, IPMekh RAN Publ., 2013. 706 p.

[18] Millikan R., White D. Systematics of vibrational relaxation. J. of Chem. Phys., 1963, vol. 39, no. 12, pp. 3209-3212.