|

On Implementation of Implosion Principle in Shaped Charges with Hemispherical Liners of Degressive Thickness

Authors: Fyodorov S.V. Published: 24.05.2017
Published in issue: #3(72)/2017  
DOI: 10.18698/1812-3368-2017-3-71-92

 
Category: Mathematics and Mechanics | Chapter: Solid Mechanics  
Keywords: numerical simulation, explosion, shaped charge, shaped-charge jet, hemispherical liner of degressive thickness, implosion principle, mass and velocity distribution

On the basis of numerical simulation within a twodimensional axisymmetric problem of continuum mechanics the study shows that transition from the constant thickness of hemispherical shaped-charge liners to degressive thickness (decreasing from top to the basis) makes it possible to essentially increase the velocity of the formed shaped-charge jets due to conditions for implementing the implosion principle (spherically symmetric convergence of liner material to the center). Copper was considered as material of liners. We compared parameters of shaped-charge jets from hemispherical liners to parameters of the jet formed by the modern typical shaped charge with copper conic liner which provides penetration depth into a steel target at the level of 10 diameters of the charge. To carry out the comparative analysis, we calculated mass and velocity distributions for shaped-charge jets by results of numerical simulation. The velocity of the jet's head part and its full mass acted as integrated indicators for comparative estimation of the shaped-charge jets limit length which defines the jets potential penetrability. Findings of the research show that use of hemispherical liners of degressive thickness in shaped charges makes it possible to form the shaped-charge jets whose head part velocity and penetrability are not inferior to the one of the jets formed by conic liners.

References

[1] Odintsov V.A. K.P. Stanyukovich i implozivnyy vzryv [K.P. Stanyukovich and implosive explosion]. Moscow, Bauman MSTU Publ., 2005. 52 p.

[2] Orlenko L.P., ed. Fizika vzryva. T. 2 [Explosion physics. Vol. 2]. Moscow, Fizmatlit Publ., 2004. 656 p.

[3] Walters W.P., Zukas J.A. Fundamentals of shaped charges. New York, Wiley, 1989. 398 p.

[4] Babkin A.V., Ladov S.V., Marinin V.M., Fedorov S.V. Characteristics of inertially stretching shaped-charge jets in free flight. Journal of Applied Mechanics and Technical Physics, 1997, vol. 38, no. 2, pp. 171-176. DOI: 10.1007/BF02467897 Available at: http://link.springer.com/article/10.1007/BF02467897

[5] Babkin A.V., Ladov S.V., Marinin V.M., Fedorov S.V. Effect of shaped-charge jet compressibility and strength on the characteristics of their inertial stretching in free flight. Journal of Applied Mechanics and Technical Physics, 1997, vol. 38, no. 2, pp. 177-184. DOI: 10.1007/BF02467898 Available at: http://link.springer.com/article/10.1007/BF02467898

[6] Hornemann U., Holzwarth A. Characteristics of shaped charges with hemispherical liners. Propellants, Explosives, Pyrotechnics, 1993, vol. 18, no. 5, pp. 282-287. DOI: 10.1002/prep.19930180509 Available at: http://onlinelibrary.wiley.com/doi/10.1002/prep.19930180509/abstract

[7] Kolpakov V.I., Baskakov V.D., Shikunov N.V. Mathematical modelling of missile-forming charges functioning taking into account technological asymmetry. Oboronnaya tekhnika, 2010, no. 1-2, pp. 82-89 (in Russ.).

[8] Asmolovskiy N.A., Baskakov V.D., Tarasov V.A. The impact of periodic disturbances on the formation of high-speed rod elements. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [Proceedings of Higher Educational Institutions. Machine Building], 2013, no. 8, pp. 8-14 (in Russ.). DOI: 10.18698/0536-1044-2013-8-8-14

[9] Asmolovskiy N.A., Baskakov V.D., Zarubina O.V. Research into the effect of technological imperfections of meniscus liners on explosive formation dynamics of high-speed rod elements. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2015, no. 5, pp. 72-86 (in Russ.). DOI: 10.18698/0236-3941-2015-5-72-86

[10] Tarasov V.A., Kolpakov V.I., Korolev A.N., Baskakov V.D. Numerical simulation of process of jet-dynamic flushing of parts with blind holes. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2011, no. 4, pp. 34-41 (in Russ.).

[11] Baskakov V.D., Zarubina O.V., Karnaukhov K.A., Tarasov V.A. Mathematical modelling of ideal flat jets impact. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2016, no. 2, pp. 79-90 (in Russ.). DOI: 10.18698/1812-3368-2016-2-79-90

[12] Babkin A.V., Kolpakov V.I., Okhitin V.N., Selivanov V.V. Prikladnaya mekhanika sploshnykh sred. T. 3. Chislennye metody v zadachakh fiziki bystroprotekayushchikh protsessov [Applied continuum mechanics. Vol. 3. Numerical approach in problems of highspeed process physics]. Moscow, Bauman MSTU Publ., 2006. 520 p.

[13] Veldanov V.A., Markov V.A., Pusev V.I., Ruchko A.M., Sotskiy M.Yu., Sotskiy Yu.M., Fedorov S.V. Study of dynamical mechanical properties of aluminum alloys by method of accelerometry. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2010, no. 2, pp. 37-46 (in Russ.).

[14] Zhernokletov M.V., ed. Metody issledovaniya svoystv materialov pri intensivnykh dinamicheskikh nagruzkakh [Methods of material properties research under intense dynamic load]. Sarov, FGUP "RFYaTs-VNIIEF" Publ., 2005. 428 p.

[15] Oran E.S., Boris J.P. Numerical simulation of reactive flow. Elsevier Science Publishing, 1987.

[16] Fedorov S.V. On possibility of metal jet cut-off in case of hollow charge explosion in axial magnetic field. Boepripasy i vysokoenergeticheskie kondensirovannye sistemy, 2008, no. 2, pp. 73-80 (in Russ.).

[17] Fedorov S.V., Veldanov V.A., Smirnov V.E. Numerical analysis of high density alloys and elongated projectiles’ velocity and strength effect on their penetration into a steel target. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2015, no. 1, pp. 65-83 (in Russ.). DOI: 10.18698/0236-3941-2015-1-65-83

[18] Fedorov S.V., Veldanov V.A. Using segmented projectiles for cavern forming in soil-rock barriers. Izvestiya RARAN, 2012, no. 1, pp. 43-50 (in Russ.).

[19] Fedorov S.V., Veldanov V.A. Determination of the dimension of a cavity in water behind a fast-moving cylindrical body. Technical Physics, 2013, vol. 58, no. 2, pp. 165-169. DOI: 10.1134/S1063784213020072 Available at: https://link.springer.com/article/10.1134/S1063784213020072

[20] Fedorov S.V., Bayanova Ya.M., Ladov S.V. Numerical analysis of the effect of the geometric parameters of a combined shaped-charge liner on the mass and velocity of explosively formed compact elements. Combustion, Explosion, and Shock Waves, 2015, vol. 51, no. 1, pp. 130-142. DOI: 10.1134/S0010508215010141 Available at: http://link.springer.com/article/10.1134/S0010508215010141

[21] Lee W.H. Computer simulation of shaped charge problems. World Scientific Publishing Co. Pte. Ltd., 2006. 380 p.

[22] Kinelovskiy S.A., Trishin Yu.A. Physical aspects of the hollow-charge effect. Combustion, Explosion and Shock Waves, 1980, vol. 16, no. 5, pp. 504-515. DOI: 10.1007/BF00794924 Available at: http://link.springer.com/article/10.1007/BF00794924

[23] Titov V.M. Vozmozhnye rezhimy gidrodinamicheskoy kumulyatsii pri skhlopyvanii oblitsovki [Possible regimes of hydrodynamic in process of shell collapse]. Doklady AN SSSR, 1979, vol. 247, no. 5, pp. 1082-1084 (in Russ.).

[24] Fedorov S.V., Bayanova Ya.M. Penetration of long strikers under hydrodynamic conditions with allowance for the material compressibility. Technical Physics, 2011, vol. 56, no. 9, pp. 1266-1271. DOI: 10.1134/S1063784211090088 Available at: http://link.springer.com/article/10.1134/S1063784211090088

[25] Babkin A.V., Ladov S.V., Marinin V.M., Fedorov S.V. Regularities of the stretching and plastic failure of metal shaped-charge jets. Journal of Applied Mechanics and Technical Physics, 1999, vol. 40, no. 4, pp. 571-580. DOI: 10.1007/BF02468430 Available at: http://link.springer.com/article/10.1007/BF02468430

[26] Fedorov S.V., Babkin A.V., Ladov S.V. Magnetohydrodynamic instability evolution in shaped charge jet under electrodynamic impact. Oboronnaya tekhnika, 1998, no. 1-2, pp. 49-56 (in Russ.).