|

Mathematical model of non-local thermal viscoelastic medium. Part 3. Equations of motion

Authors: Kuvyrkin G.N. Published: 11.09.2013
Published in issue: #3(50)/2013  
DOI:

 
Category: Applied Mathematics and Methods of Mathematical Simulation  
Keywords: non-local continuum, internal state parameters, equations of motion

Modern structural and functional materials presenting an aggregate of micro- and nanostructured elements find wide application in technology. An important stage in creating and using the class of materials under consideration is the construction of mathematical models providing the description of behavior of these materials within a broad range of variations in exposure conditions. However the general methodology for mathematical model construction is still far from being complete. Here a derivation of equations of motion is offered taking into account the features of small-size materials (continuum non-locality, momentary stress states). For deducing the equations, the relationships of rational thermodynamics of irreversible processes with internal state parameters, as well as the method of continuous approximation of the generalized mechanics of continuum are used. The obtained forms for writing equations ofmotion make it possible to take into consideration the main peculiarities in nonstationary deforming of materials with the small-size structure.

References

[1] Onami M., Ivasimidzu S., Genka K. Vvedenie v mikromekhaniku [Introduction to micromechanics]. Moscow, Metallurgiya Publ., 1987. 280 p.

[2] Ambartsumyan S.A., Belubekyan M.V. Prikladnaya mikropolyarnaya teoriya uprugikh obolochek [Applied micropolar theory of elastic shells]. Erevan, Gitutyun Publ., 2010. 136 p.

[3] Krivtsov A.M. Deformirovanie i razrushenie tverdykh tel s mikrostrukturoy [Deformation and fracture of solids with microstructure]. Moscow, Fizmatlit Publ., 2007. 304 p.

[4] Poole C.P., Owens F. J. Introduction to nanotechnology. New Jersey, John Wiley & Sons, 2003. 400 p. (Russ. ed.: Pul Ch., Ouens F. Nanotekhnologii. Moscow, Tekhnosfera Publ., 2006. 336 p.).

[5] Starostin V.V. Materialy i metody nanotekhnologiy [Materials and methods of nanotechnology]. Moscow, BINOM Publ., 2010. 431 p.

[6] Kuvyrkin G.N. Mathematical model of a nonlocal thermoviscoelastic medium. Part 1. Governing equations. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser. Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ. Ser. Nat. Sci.], 2013, no. 1, pp. 26-33 (in Russ.).

[7] Kuvyrkin G.N. Mathematical model of a nonlocal thermoviscoelastic medium. Part 2. The heat equation. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser. Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ. Ser. Nat. Sci.], 2013, no. 2, pp. 102-111 (in Russ.).

[8] Truesdell C.A. A First Course in Rational Continuum Mechanics. New York, Academic Press, 1977, 303 p. (Russ. ed.: Trusdell K. Pervonachal’nyy kurs ratsional’noy mekhaniki sploshnykh sred. Moscow, Mir Publ., 1975. 592 p.).

[9] Zarubin V.S., Kuvyrkin G.N. Matematicheskie modeli mekhaniki i elektrodinamiki sploshnoy sredy [Mathematical models of continuum mechanics and electrodynamics]. Moscow, Bauman MSTU Publ., 2008. 512 p.

[10] Eringen A.C. Nonlocal continuum field theories. New York, Springer-Verlag, 2002. 393 p.