|

Robust Estimation in Threshold Autoregression

Authors: Goryainov V.B., Goryainova E.R. Published: 22.11.2017
Published in issue: #6(75)/2017  
DOI: 10.18698/1812-3368-2017-6-19-30

 
Category: Mathematics and Mechanics | Chapter: Probability Theory and Mathematical Statistics  
Keywords: threshold autoregression model, M-estimates, asymptotic normality, asymptotic relative efficiency, Tukey distribution

In this paper we study robust properties of M-estimates of the parameters of self-excited threshold autoregression model. The loss function that determines M-estimates was supposed to be convex and twice differentiable. The threshold of the autoregressive model was considered to be known and unique. We proved the asymptotic normality of M-estimates of autoregressive equation parameters. Moreover, we found the asymptotic relative efficiency of M-estimates, the least square and least absolute deviation estimates with respect to each other. First, we calculated the asymptotic relative efficiency values for the normal distribution, as well as the values of the double exponential distribution (Laplace distribution) and contaminated normal distribution (Tukey distribution). Then, we described the dependence of the asymptotic relative efficiency of these estimates on Tukey distribution parameters (the proportion and level of contamination). Next, for all three estimates in the space of Tukey distribution parameters, we built lines of equal efficiency, which made it possible to single out the preference areas for each pair of estimates considered. Findings of the research show that M-estimates are more efficient than the least squares and least absolute deviation estimates if the distribution of the innovation process slightly deviates from the normal distribution. Finally, we give recommendations on the use of these estimates in practical applications.

References

[1] Franses P.H., Dijk D.V., Opschoor A. Time series models for business and economic fore-casting. Cambridge, Cambridge University Press, 2014. 300 p.

[2] Tong H. Nonlinear time series: A dynamical approach. New York, Oxford University Press, 1990. 564 p.

[3] Tong H. Threshold models in time series analysis — 30 years on. Statistics and its Interface, 2011, vol. 4, no. 2, pp. 107–118. DOI: 10.4310/SII.2011.v4.n2.a1

[4] Petruccelli J.D., Woolford S.W. A threshold AR(1) model. J. Appl. Probab., 1984, vol. 21, iss. 2, pp. 270–286. DOI: 10.1017/S0021900200024670

[5] Wang L., Wang J. The limiting behavior of least absolute deviation estimators for threshold autoregressive models. J. Multivariate Anal., 2004, vol. 89, iss. 2, pp. 243–260. DOI: 10.1016/j.jmva.2004.02.006

[6] Pan P.-Q. Linear programming computation. Heidelberg, Springer, 2014. 747 p.

[7] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical recipes: The art of scientific computing. New York, CAP, 2007. 1235 p.

[8] Bissantz N., Dümbgen L., Munk A., Stratmann B. Convergence analysis of generalized iteratively reweighted least squares algorithms on convex function spaces. SIAM J. Optim., 2009, vol. 19, iss. 4, pp. 1828–1845. DOI: 10.1137/050639132 Available at: http://epubs.siam.org/doi/abs/10.1137/050639132

[9] Mudrov V.I., Kushko V.L. Metod naimenshikh moduley [Least modules method]. Moscow, Znanie Publ., 1971. 64 p.

[10] Huber P., Ronchetti E.M. Robust statistics. Hoboken, Wiley, 2009. 360 p.

[11] Goryainov V.B. M-estimates of the spatial autoregression coefficients. Automation and Remote Control, 2012, vol. 73, iss. 8, pp. 1371–1379. DOI: 10.1134/S0005117912080103

[12] Häusler E., Luschgy H. Stable convergence and stable limit theorems. Heidelberg, Springer, 2015. 228 p.

[13] Goryainov V.B. Least-modules estimates for spatial autoregression coefficients. Journal of Computer and Systems Sciences International, 2011, vol. 50, no. 4, pp. 565–572. DOI: 10.1134/S1064230711040101

[14] Goryainov A.V., Goryainova E.R. Comparison of efficiency of estimates by the methods of least absolute deviations and least squares in the autoregression model with random coefficient. Automation and Remote Control, 2016, vol. 77, iss. 9, pp. 1579–1588. DOI: 10.1134/S000511791609006X

[15] Andersen P.K., Gill R.D. Cox’s regression model for counting processes: A large sample study. Ann. Statist., 1982, vol. 10, no. 4, pp. 1100–1120. DOI: 10.1214/aos/1176345976 Available at: https://projecteuclid.org/euclid.aos/1176345976

[16] Goryainov V.B., Goryainova E.R. The influence of anomalous observations on the least squares estimate of the parameter of the autoregressive equation with random coefficient. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2016, no. 2, pp. 16–24 (in Russ.). DOI: 10.18698/1812-3368-2016-2-16-24