|

Temperature Field of Anisotropic Half-Space at its Local Heating under Conditions of Heat Exchange with External Environment

Authors: Attetkov A.V., Volkov I.K. Published: 08.06.2018
Published in issue: #3(78)/2018  
DOI: 10.18698/1812-3368-2018-3-4-12

 
Category: Mathematics | Chapter: Mathematical Physics  
Keywords: anisotropic half-space, heat exchange with external environment, local-heating, temperature field, integral transformations

The paper introduces a mathematical model of the process of generating the temperature field of an anisotropic half-space, whose boundary is subjected to a stationary heat flow with Gaussian-type intensity and to the external impact at a constant temperature. The study shows that the temperature field is the sum of two additive components. The first component is due to the external impact, the heat exchange with the environment being realized according to Newton's law. Using the composition of a two-dimensional exponential integral Fourier transformation and an integral Laplace transformation in an analytically closed form, we found a solution for the second additive component of the temperature field of the object under study. Consequently, we formulated sufficient conditions, whose implementation allows us to generalize the result obtained in the case of unsteady heat flows of an arbitrary structure under conditions of heat exchange with the external environment according to Newton's law

References

[1] Carslaw H.S., Jaeger J.C. Conduction of heat in solids. Oxford Science Publications, 1986. 520 p.

[2] Lykov A.V. Teoriya teploprovodnosti [Heat conduction theory]. Moscow, Vysshaya shkola Publ., 1967. 600 p.

[3] Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tverdykh tel [Analytical methods of heat conduction in solids]. Moscow, Vysshaya shkola Publ., 2001. 552 p.

[4] Formalev V.F. Teploprovodnost anizotropnykh tel. Analiticheskie metody resheniya zadach [Heat conduction of anisotropic solids. Analytical technique of problem solving]. Moscow, Fizmatlit Publ., 2014. 312 p.

[5] Formalev V.F. Teploperenos v anizotropnykh tverdykh telakh. Chislennye metody, teplovye volny, obratnye zadachi [Heat transfer in anisotropic solids. Numerical methods, heat waves, inverse problems]. Moscow, Fizmatlit Publ., 2015. 280 p.

[6] Formalev V.F., Kolesnik S.A. Matematicheskoe modelirovanie aerogazodinamicheskogo nagreva zatuplennykh anizotropnykh tel [Mathematical simulation of aerogasdynamic heating of blunt body]. Moscow, MAI Publ., 2016. 160 p.

[7] Kartashov É.M. Analytical methods of solution of boundary‐value problems of nonstationary heat conduction in regions with moving boundaries. Journal of Engineering Physics and Thermophysics, 2001, vol. 74, iss. 2, pp. 498–536. DOI: 10.1023/A:1016641613982

[8] Pekhovich A.I., Zhidkikh V.M. Raschet teplovogo rezhima tverdykh tel [Calculation of thermal regime for solids]. Leningrad, Energiya Publ., 1968. 304 p.

[9] Sneddon I.N. Fourier transforms. McGraw-Hill, 1951. 542 p.

[10] Bateman H., Erdélyi A. Tables of integral transforms. Vol. 1. McGraw-Hill, 1954. 391 p.

[11] Bellman R. Introduction to matrix analysis. McGraw-Hill, 1960. 328 p.

[12] Elsgolts L.E. Differentsialnye uravneniya i variatsionnoe ischislenie [Differential equations and variational calculus]. Moscow, Nauka Publ., 1969. 424 p.

[13] Ditkin V.A., Prudnikov A.P. Spravochnik po operatsionnomu ischisleniyu [Handbook on operating calculus]. Moscow, Vysshaya shkola Publ., 1965. 468 p.