|

Radiation-Accelerated Magnetized Jets

Authors: Galanin M.P., Lukin V.V., Chechetkin V.M. Published: 15.04.2015
Published in issue: #2(59)/2015  
DOI: 10.18698/1812-3368-2015-2-63-94

 
Category: Informatics, Computer Engineering and Control | Chapter: Mathematical Modelling. Numerical Methods, and Software Systems  
Keywords: mathematical modelling, astrophysical jets, radiation magnetic hydrodynamics

Mathematical modelling problem is stated for astrophysical jet outflows from the neighborhood of compact objects. Magnetohydrodynamical and radiation approaches explaining various properties of the outflows, are considered. Two model problems are presented within the framework of magnetohydrodynamical and radiation-magnetohydrodynamical statements in order to carry out self-consisted modeling of the processes ofjet’s formation, development and acceleration. Numerical research results are given for the problems under consideration. The results demonstrate formation and efficient radiation acceleration of a canalized jet outflow.

References

[1] Cherepashchuk A.M. SS 433: New results, new problems. Zemlya i Vselennaya [The Earth and the Universe], 1986, no. 1, pp. 21-29 (in Russ.).

[2] Beskin V.S. Magnetohydrodynamic models of astrophysical jet exhausts. Physics-Uspekhi [Advances in Physical Sciences], 2010, no. 180 (12), pp. 1241-1278 (in Russ.).

[3] Cherepashchuk A.M. Data of photometric observations SS433 and their interpretation. Itogi nauki i tekhniki. Ser. Astronomiya [Totals of Science and Technology, Astronomy], 1988, no. 38, pp. 60-120 (in Russ.).

[4] Margon B. Observations of SS433. ARA&A, 1984, iss. 22, pp. 507-536.

[5] Lauer T.R. Compact Core of Galaxy M87. HST News Release, 1991. STSCI-PRC92-01.

[6] Mioduszewski A.J., Rupen M.P., Walker R.C. et al. A Summer of SS433: Forty Days of VLBA Imaging. Bull. Am. Astron. Soc., 2004, vol. 36, p. 967.

[7] Biretta J.A., Owen F.N. Velocity Structure of the M87 Jet: Preliminary Results; ed. by J. Anton Zensus, Timothy J. Pearson. Parsec-scale radio jets. Cambridge University Press, 1990, pp. 125-128.

[8] Cherepashchuk A.M. Observational Manifestations of Precession of Accretion Disk in the SS 433 Binary System. Space Science Reviews, 2002, vol. 102 (1), pp. 23-35.

[9] Beskin V.S. Osesimmetrichnye statsionarnye techeniya v astrofizike [Axisymmetric stationary flows in astrophysics]. Moscow, Editorial URSS Publ., 2006.

[10] Spruit H.C. Theory of Magnetically Powered Jets. The jet paradigm: from microquasars to quasars, 2010, vol. 794, pp. 233-263.

[11] Bisnovatyi-Kogan G.S. Mechanisms of jet formation, ed. by L. Errico, A. Vittone. Stellar jets and bipolar out ows. Dordrecht: Kluwer Academic Publishers, 1993.

[12] Cerqueira A.H., de Gouveia Dal Pino E.M. Magnetic Field Effects on the Structure and Evolution of Overdense Radiatively Cooling Jets. Astrophys. J., 1999, vol. 510, pp. 828-845.

[13] Savel’ev V.V., Toropin Yu.M., Chechetkin V.M. Simulations of a Supersonic Accretion onto Magnetized Disks: Properties of Developing Outflows. Low Mass Star Formation -from Infall to Outflow. Poster proceedings of IAU Symp., ed. by F. Malbet, A. Castets, 1997, vol. 182, pp. 254.

[14] Komissarov S.S. Magnetic Acceleration of Relativistic Jets. Mem. S.A. It., 2011, vol. 82, pp. 95-103.

[15] Ouyed R., Pudritz R.E. Numerical Simulations of Astrophysical Jets from Keplerian Disks. II. Episodic Outlows. Astrophys. J., 1997, vol. 484, pp. 794-809.

[16] Romanova M.M., Ustyugova G.V., Koldoba A.V., Lovelace R.V.E. Launching of Conical Winds and Axial Jets from the Disk-Magnetosphere Boundary: Axisymmetric and 3D Simulations. MNRAS, 2009, vol. 399, pp. 1802-1828.

[17] Galanin M.P., Lukin V.V., Chechetkin V.M. Jet Acceleration for Different Versions of the Substance Source Simulation. Matem. Modelirovanie [Mathematical Simulation], 2011, vol. 23 (10), pp. 65-81 (in Russ.).

[18] Savel’ev V.V., Toropin Yu.M., Chechetkin V.M. A Possible Mechanism for the Formation of Molecular Flows. Astronomy Reports, 1996, vol. 40, pp. 494-508.

[19] Fendt C. Formation of Protostellar Jets as Two-Component Out ows from Star-Disk Magnetospheres. Astrophys. J, 2009, vol. 692, pp. 346-363.

[20] Galanin M.P., Toropin Yu.M., Chechetkin V.M. Radiative Acceleration of the Substance Portions in Accretion Disks Nearby Astrophysical Objects Astronomicheskiy zhurnal [Astronomical Journal], 1999, iss. 76 (2), pp. 143-160 (in Russ.).

[21] Icke V. Photon Surfing Near Compact Accreting Objects. Astron. Astrophys. 1989, vol. 216, pp. 2940-304.

[22] Blandford R.D., Payne D.G. Hydromagnetic Ows from Accretion Discs and the Production of Radio Jets. MNRAS, 1982, vol. 199, pp. 883-903.

[23] Krasnopolsky R., Li Zhi-Yun, Blandford R. Magnetocentrifugal Launching of Jets from Accretion Disks. I. Cold Axisymmetric Flows. Astrophys. J., 1999, vol. 526, pp. 542-631.

[24] Shapiro P.R., Milgrom M., Rees M.J. The Radiative Acceleration of Astrophysical Jets: Line Locking in SS 43. Astrophys. J. Suppl., 1986, vol. 60, pp. 393-431.

[25] Tajima Y., Fukue J. Radiative Disk Winds under Radiation Drag II. Publ. Astron. Soc. Japan, 1998, vol. 50, pp. 483-493.

[26] Galanin M.P., Lukin V.V., Chechetkin V.M. Radiative Acceleration of Astrophysical Channeled Jet Exhausts. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki, Spetsvyp. "Prikladnaya matematika" [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci., Spec. Issue "Applied mathematics"], 2011, pp. 11-33 (in Russ.).

[27] Krivosheyev Yu.M., Bisnovatyi-Kogan G.S., Cherepashchuk A.M., Postnov K.A. Monte-Carlo Simulations of the Broad-Band X-ray Continuum of SS433. MNRAS, 2009, vol. 394, pp. 1674-1684.

[28] Zel’dovich Ya.B., Rayzer Yu.P. Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavleniy [Physics of shock waves and high-temperature hydrodynamic phenomena]. Moscow, Nauka Publ., 1966. 688 p.

[29] Chetverushkin B.N. Matematicheskoe modelirovanie zadach dinamiki izluchayushchego gaza [Mathematical simulation of the radiating gas dynamics’ problems]. Moscow, Nauka Publ., 1985. 304 p.

[30] Galanin M.P., Lukin V.V., Chechetkin V.M. Mathematical Simulation of Jet Exhausts Nearby Compact Objects. Astronomicheskiy zhurnal [Astronomical Journal], 2009, iss. 86 (4), pp. 331-344 (in Russ.).

[31] Takeuchi S., Ohsuga K., Mineshige S. A Novel Jet Model: Magnetically Collimated, Radiation-Pressure Driven Jet. Publications of the Astronomical Society of Japan, 2010, vol. 62 (5), pp. L43-47.

[32] Pogorelov N.V., Semenov A.Yu. Solar Wind Interaction with the Magnetized Interstellar Medium. Astron. Astrophys., 1997, vol. 321, pp. 330-337.

[33] Yanenko N.N. Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoy fiziki [Method of fractional steps to solve multivariate problems of mathematical physics]. Novosibirsk, Nauka Publ., 1967.