Oxygen Solubility in a Suspension of Tin (II) Oxyhydroxide, a Precursor in the Synthesis of Tin (II) and (IV) Oxides

Authors: Kuznetsova S.A., Lisitsa K.V., Malchik A.G., Kozik V.V. Published: 28.09.2018
Published in issue: #5(80)/2018  
DOI: 10.18698/1812-3368-2018-5-112-124

Category: Chemistry | Chapter: Physical Chemistry  
Keywords: solubility, oxygen, salt solution, oxyhydroxide solution, synthesis, tin (II) oxide, tin (IV) oxide, heat treatment, microwave treatment

The study presents the processes taking place during the interaction of Sn6O4(OH)4 and ammonium chloride in an aqueous suspension that cause the dissolved oxygen content to change. We determined the solubility of atmospheric oxygen in solutions of ammonia and ammonium chloride in water and showed that increasing ammonia concentration increases oxygen solubility. We describe how the solubility of Sn6O4(OH)4 in ammonium chloride solution varies as the NH4Cl concentration increases from 0.27 to 5.45 mol/l at 20 °C. We conducted heat and microwave treatment of suspensions consisting of Sn6O4(OH)4 dispersed in ammonium chloride solutions of various concentrations and obtained mixtures of tin (II) oxide SnO and tin (IV) oxide SnO2; we determined the conditions under which pure tin (II) oxide SnO may be synthesised, uncontaminated by tin (IV) oxide SnO2. Ammonium chloride concentration and the amount of Sn6O4(OH)4 dissolved in the suspension determine the oxygen content, which affects the quantitative composition of the oxide mixture

The study was supported by the Ministry of Education and Science of the Russian Federation as part of a government assignment (project no. 4.9607.2017/8.9)


[1] Kim J.H., Jeon K.M., Park J.S., Kang Y.Ch. Excellent Li-ion storage performances of hierarchical SnO–SnO2 composite powders and SnO nanoplates prepared by one-pot spray pyrolysis. Journal of Power Sources, 2017, vol. 359, pp. 363–370. DOI: 10.1016/j.jpowsour.2017.05.105

[2] Hu Y., Xu K., Kong L., Jiang H., Zhang L., Li Ch. Flame synthesis of single crystalline SnO nanoplatelets for lithium-ion batteries. Chem. Eng. J., 2014, vol. 242, pp. 220–225. DOI: 10.1016/j.cej.2013.09.054

[3] Chen X.T., Wang K.X., Zhai Y.B., Zhang H.J., Wu X.Y., Wei X., Chena J.Sh. A facile one-pot reduction method for the preparation of a SnO/SnO2/GNS composite for high performance lithium ion batteries. Dalton Trans., 2014, vol. 43, no. 8, pp. 3137–3143.

[4] Yue W., Yang S., Ren Y., Yang X. In situ growth of Sn, SnO on graphene nanosheets and their application as anode materials for lithium-ion batteries. Electrochim. Acta, 2013, vol. 92, pp. 412–420. DOI: 10.1016/j.electacta.2013.01.058

[5] Dai Q., Li D., Wei Y., Liu B., Chen G., Zou B., Zou G. Syntheses, characterizations, and applications in lithium ion batteries of hierarchical SnO nanocrystals. J. Phys. Chem., 2009, vol. 113, pp. 14140–14144. DOI: 10.1021/jp905668p

[6] Oliveira R.S., Machado P.M.A., Ramalho H.F., Rangel E.T., Suarez P.A.Z. Acylation of epoxidized soybean biodiesel catalyzed by SnO/Al2O3 and evaluation of physical chemical and biologic activity of the product. Industrial Crops & Products, 2017, vol. 104, pp. 201–209. DOI: 10.1016/j.indcrop.2017.04.049

[7] Pichugina A.A., Kuznetsova S.A., Tsyro L.V. Aside-base properties of the surface SnO. Key Engineering Materials, 2016, vol. 670, pp. 62–68. DOI: 10.4028/www.scientific.net/KEM.670.62

[8] Kuznetsova S.A., Pichugina A.A., Kozik V.V. Microwave synthesis of a photocatalytically active SnO-based material. Inorg. Mater., 2014, vol. 50, iss. 4, pp. 387–391. DOI: 10.1134/S0020168514040086

[9] Liu B., Ma J., Zhao H., Chen Y., Yang H. Room-temperature synthesis, photoluminescence and photocatalytic properties of SnO nanosheet-based flowerlike architectures. Appl. Phys. A, 2012, vol. 107, iss. 2, pp. 437–443. DOI: 10.1007/s00339-012-6760-6

[10] Xu X.B., Ge M.Y., Stahl K., Jiang J.Z. Growth mechanism of cross-like SnO structure synthesized by thermal decomposition. Chem. Phys. Lett., 2009, vol. 482, no. 4-6, pp. 287–290. DOI: 10.1016/j.cplett.2009.10.012

[11] Chen M.H., Huang Z.C., Wu G.T., Zhu G.M., You J.K., Lin Z.G. Synthesis and characterization of SnO-carbon nanotube composite as anode material for lithium-ion batteries. Mater. Res. Bull., 2003, vol. 38, iss. 5, pp. 831–836. DOI: 10.1016/S0025-5408(03)00063-1

[12] Chen M.H., Huang Z.C., Wu G.T., Zhu G.M., You J.K., Lin Z.G. Solvothermal preparation and morphological evolution of stannous oxide powders. Materials Letters, 2001, vol. 48, iss. 2, pp. 99–103. DOI: 10.1016/S0167-577X(00)00286-X

[13] Kuznetsova S.A., Pichugina A.A. Synthesis and properties of SnO prepared from ammoniacal and carbonate suspensions of tin (II) hydroxy compound under microwave radiation. Russ. J. of Appl. Chemistry, 2015, vol. 88, iss. 6, pp. 1082−1085. DOI: 10.1134/S1070427215060312

[14] Wu D.Sh., Han Ch.Y., Wang Sh.Y., Wu N.L., Rusakova I.A. Microwave-assisted solution synthesis of SnO nanocrystallites. Materials Letters, 2002, vol. 53, iss. 3, pp. 155–159. DOI: 10.1016/S0167-577X(01)00468-2

[15] Pires F.I., Joanni E., Savu R., Zaghete M.A., Longo E., Varela J.A. Microwave-assisted hydrothermal synthesis of nanocrystalline SnO powders. Materials Letters, 2008, vol. 62, iss. 2, pp. 239–242. DOI: 10.1016/j.matlet.2007.05.006

[16] Zubair I.M., Wang F., Feng T., Zhao H., Rafi Y.R., un Din R., Qurat H.F., ul ain Javed Q., Khan D.F. Facile synthesis of self-assembled SnO nano-square sheets and hydrogen absorption characteristics. Mater. Res. Bull., 2012, vol. 47, iss. 11, pp. 3902–3907. DOI: 10.1016/j.materresbull.2012.07.002

[17] Kuznetsova S., Lisitsa K. Synthesis of tin (II) oxide from tin (II) oxohydroxide. AIP Conf. Proc., 2017, vol. 1899, no. 1, art. 020005. DOI: 10.1063/1.5009830

[18] Fialko M.B. Neizotermicheskaya kinetika v termicheskom analize [Non-isotermic kinetics in thermal analysis]. Tomsk, Izd-vo Tom. un-ta Publ., 1981. 110 p.

[19] Locock A.J., Ramik R.A., Back M.E. The structures of two novel Sn2+ oxysalts found with romarchite and hydroromarchite as corrosion products of pewter artifacts. The Canadian Mineralogist, 2006, vol. 44, pp. 1457–1467.

[20] Groisman A.Sh., Khomutov N.E. Solubility of oxygen in solutions of electrolytes. Russ. Chem. Rev., 1990, vol. 59, no. 8, pp. 707–727. DOI: 10.1070/RC1990v059n08ABEH003550