|

Study of the Synthesis Process and Properties of the Vanadium Pentoxide Nanoparticles

Authors: Yarovaya O.V., Averina Yu.M., Magzhanov R.Kh., Karetkin B.A., Panfilov V.I., Boldyrev V.S. Published: 24.05.2023
Published in issue: #2(107)/2023  
DOI: 10.18698/1812-3368-2023-2-126-139

 
Category: Chemistry | Chapter: Physical Chemistry  
Keywords: synthesis, vanadium pentoxide, tubular nanoparticles, aqueous dispersions, aggregative stability

Abstract

The paper presents results of studying the possibility of synthesizing aqueous dispersions of the vanadium (V) oxide nanoparticles that retain aggregative stability for a long period. The experiments performed resulted in obtaining tubular nanoparticles of the vanadium pentoxide (V2O5) 50 µm long and 5--10 nm in diameter. Wall thickness of the obtained tubes was 1.1 nm. It was experimentally established that type of the acid used was not affecting the resulting nanoparticles size, but was significantly effecting the shelf life. To increase the nanoparticles optimal shelf life, it is proposed to use the hydrochloric acid solutions as the peptizing agent. This method made it possible not only to increase the system stability, but also to raise the nanoparticles concentration up to 1 % of the mass. In the framework of experiments on studying the obtained particles surface characteristics, it was found that nanoparticles in the range of pH = 3.0--4.2 were negatively charged, and aggregation stability was mainly determined by the electrostatic factor. The proposed chemical technology could be used in industrial production of the vanadium pentoxide nanoparticles in various industries

The work was supported by the Russian Science Foundation (project no. 21-19-00367)

Please cite this article in English as:

Yarovaya O.V., Averina Yu.M., Magzhanov R.Kh., et al. Study of the synthesis process and properties of the vanadium pentoxide nanoparticles. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 2 (107), pp. 126--139 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2023-2-126-139

References

[1] Medhi R., Marquez M.D., Lee T.R. Visible-light-active doped metal oxide nanoparticles: review of their synthesis, properties, and applications. ACS Appl. Nano Mater., 2020, vol. 3, no. 7, pp. 6156--6185. DOI: https://doi.org/10.1021/acsanm.0c01035

[2] Vorobyeva S.A., Rzheusskiy S.E. Nanoprticles of metals and their inorganic compounds obtained through interphase and redox-transmetalation interaction: application in medicine and pharmacology. Vestnik RGMU [Bulletin of RSNU], 2018, no. 6, pp. 111--115 (in Russ.). DOI: https://doi.org/10.24075/brsmu.2018.076

[3] Tuchina E.S., Gvozdev G.A., Kosobudskiy I.D. The study of antibacterial properties of coatings based on metal (Ag, Zn) nanoparticles in silicon dioxide matrix. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Khimiya. Biologiya. Ekologiya [Izvestiya of Saratov University. Chemistry. Biology. Ecology], 2018, vol. 18, no. 2, pp. 211--215 (in Russ.). DOI: https://doi.org/10.18500/1816-9775-2018-18-2-211-215

[4] Sayfullin R.S., Fomina R.E., Mingazova G.G., et al. Effect of aluminium dioxide nanoparticles on the corrosion resistance of nickel coatings. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2010, no. 11, pp. 358--362 (in Russ.).

[5] Irshad M.A., Nawaz R., Rehman M.Z., et al. Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles. A review. Ecotoxicol. Environ. Saf., 2021, vol. 212, art. 111978. DOI: https://doi.org/10.1016/j.ecoenv.2021.111978

[6] Crane J.K. Metal nanoparticles in infection and immunity. Immunol Invest., 2020, vol. 49, no. 7, pp. 794--807. DOI: https://doi.org/10.1080/08820139.2020.1776724

[7] Hosseini-Ardali S., Fattahi M., Kazemeini M., et al. Preparation, physiochemical and kinetic investigations of V2O5/SiO2 catalyst for the sulfuric acid production. Int. J. Eng., 2016, vol. 29, no. 11, pp. 1478--1488.

[8] Vo P.N.X., Le-Phuc N., Tran T.V., et al. Oxidative regeneration study of spent V2O5 catalyst from sulfuric acid manufacture. Reac. Kinet. Mech. Cat., 2018, vol. 125, no. 2, pp. 887--900. DOI: https://doi.org/10.1007/s11144-018-1442-9

[9] Alrammouz R., Lazerges M., Pironon J., et al. V2O5 gas sensors. Sens. Actuator A: Phys., 2021, vol. 332-2, art. 113179. DOI: https://doi.org/10.1016/j.sna.2021.113179

[10] Schimmoeller B., Schulz H., Pratsinis S.E., et al. Ceramic foams directly-coated with flame-made V2O5/TiO2 for synthesis of phthalic anhydride. NSTI-Nanotech, 2007, vol. 4, pp. 222--225.

[11] Farzaneh F. Synthesis and characterization of V2O5/SiO2 nanoparticles as efficient catalyst for aromatization 1,4-dihydropyridines. Journal of Sciences, 2012, vol. 23, no. 4, pp. 313--318.

[12] Lei Z., Long A., Wen C., et al. Experimental and kinetic study of low temperature selective catalytic reduction of NO with NH3 over the V2O5 AC catalyst. Ind. Eng. Chem. Res., 2011, vol. 50, no. 9, pp. 5360--5368. DOI: https://doi.org/10.1021/ie102110r

[13] Huang Z., Zhu Z., Liu Z. Combined effect of H2O and SO2 on V2O5AC catalysts for NO reduction with ammonia at lower temperatures. Appl. Catal. B: Environ., 2002, vol. 39, no. 4, pp. 361--368. DOI: https://doi.org/10.1016/S0926-3373(02)00122-4

[14] Martin-Martin J.A., Gallastegi-Villa M., Gonzalez-Marcos M.P., et al. Bimodal effect of water on V2O5/TiO2 catalysts with different vanadium species in the simultaneous NO reduction and 1,2-dichlorobenzene oxidation. Chem. Eng. J., 2021, vol. 417, art. 129013. DOI: https://doi.org/10.1016/j.cej.2021.129013

[15] Petrov M.M., Pichugov R.D., Loktionov P.A., et al. Test cell for membrane electrode assembly of the vanadium redox flow battery. Dokl. Phys. Chem., 2020, vol. 491, no. 1, pp. 19--23. DOI: https://doi.org/10.1134/S0012501620030021

[16] Loktionov P., Kartashova N., Konev D., et al. Fluoropolymer impregnated graphite foil as a bipolar plates of vanadium flow battery. Int. J. Energy. Res, 2022, vol. 46, iss. 8, pp. 10123--10132. DOI: https://doi.org/10.1002/er.7088

[17] Loktionov P., Pichugov R., Konev D., et al. Promising material based on paraffin-impregnated graphite foil with increased electrochemical stability for bipolar plates of vanadium redox flow battery. ChemistrySelect, 2021, vol. 46, iss. 6, pp. 13342--13349. DOI: https://doi.org/10.1002/slct.202103996

[18] Boukhalfa S., Evanoff K., Yushin G. Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy Environ. Sci., 2012, vol. 5, iss. 5, pp. 6872--6879. DOI: https://doi.org/10.1039/C2EE21110F

[19] Chen X., Pomerantseva E., Banerjee P., et al. Ozone-based atomic layer deposition of crystalline V2O5 films for high performance electrochemical energy storage. Chem. Mater., 2012, vol. 4, no. 7, pp. 1255--1261. DOI: https://doi.org/10.1021/cm202901z

[20] Peng C., Jin M., Han D., et al. Structural engineering of V2O5 nanobelts for flexible supercapacitors. Mater. Lett., 2022, vol. 320, art. 132391. DOI: https://doi.org/10.1016/j.matlet.2022.132391

[21] Thamer A.A., Juzsakova T., Rasheed R.T., et al. V2O5 nanoparticles for dyes removal from water. Chem. J. Mold., 2021, vol. 16, iss. 2, pp. 102--111. DOI: http://doi.org/10.19261/cjm.2021.911

[22] Peng G., Tai M.H., Sun D.D. Hierarchical TiO2/V2O5 multifunctional membrane for water purification. Chem. Plus. Chem., 2013, vol. 78, iss. 12, pp. 1475--1482. DOI: http://doi.org/10.1002/cplu.201300264

[23] Brauer G., ed. Handbuch der Praparativen Anorganischen Chemie. Vol. 5. Stuttgart, F. Enke, 1981.

[24] Vernardou D. State-of-the-art of chemically grown vanadium pentoxide nanostructures with enhanced electrochemical properties. Adv. Mater. Lett., 2013, vol. 4, iss. 11, pp. 798--810. DOI: https://dx.doi.org/10.5185/amlett.2013.5485

[25] Getmantsev S.V., Nechaev I.A., Gandurina L.V. Ochistka proizvodstvennykh stochnykh vod koagulyantami i flokulyantami [Industrial wastewater treatment with coagulants and flocculants]. Moscow, ASV Publ., 2008.

[26] Bogoslovskii S.Y., Kuznetsov N.N., Boldyrev V.S. Parameter optimization of electrolytic process of obtaining sodium hypochlorite for disinfection of water. J. Phys.: Conf. Ser., 2017, vol. 918, no. 1, art. 0120228. DOI: http://doi.org/10.1088/1742-6596/918/1/012028

[27] Averina Yu.M., Kalyakina G.E., Menshikov V.V., et al. Neutralisation process design for electroplating industry wastewater containing chromium and cyanides. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2019, no. 3 (84), pp. 70--80 (in Russ.). DOI: http://doi.org/10.18698/1812-3368-2019-3-70-80

[28] Bogomolov B.B., Boldyrev V.S., Zubarev A.M., et al. Intelligent logical information algorithm for choosing energy- and resource-efficient chemical technologies. Theor. Found. Chem. Eng., 2019, vol. 53, no. 5, pp. 709--718. DOI: https://doi.org/10.1134/S0040579519050270

[29] Boldyrev V.S., Averina Yu.M., Menshikov V.V., et al. Technological and organizational engineering of paint processing. Theor. Found. Chem. Eng., 2020, vol. 54, no. 3, pp. 420--424. DOI: https://doi.org/10.1134/S004057952003001X

[30] Boldyrev V.S., Kuznetsov S.V., Menshikov V.V. Innovatsionnoe razvitie malotonnazhnykh nauchno-proizvodstvennykh predpriyatiy lakokrasochnoy otrasli [Innovative development of small-tonnage scientific and production enterprises of paint and coating industry]. Moscow, Peynt-Media Publ., 2021.

[31] Kuzin E., Kruchinina N., Averina Yu., et al. Titanium-containing coagulants in wastewater treatment processes in the alcohol industry. Processes, 2022, vol. 10, no. 3, art. 440. DOI: http://doi.org/10.3390/pr10030440