|

Methane Impurity Effect in the Acetylene Decomposition on Size and Morphology of the Appearing Soot Particles

Authors: Shkolnikov E.I., Grigorenko A.V., Lipatova I.A., Kumar V., Vlaskin M.S. Published: 24.05.2023
Published in issue: #2(107)/2023  
DOI: 10.18698/1812-3368-2023-2-110-125

 
Category: Chemistry | Chapter: Physical Chemistry  
Keywords: decomposition of acetylene and mixture with methane, acetylene soot, particle size, electron microscopy, specific surface distribution

Abstract

The paper studied the effect of acetylene or its methane mixture pressure at decomposition in the laboratory cylindrical reactor with spark ignition to obtain the acetylene soot. Size range of the formed particles and their surface morphology were determined by scanning and transmission electron microscopy. Specific surface area distributions over the pore radii and evaluation of the acetylene soot samples particle size were identified using the adsorption method of limited evaporation. All the experimental methods used confirmed significant decrease in the acetylene soot particle size at the increase in the acetylene initial pressure during its decomposition. Accordingly, the particles specific outer surface increased, but the microporous specific surface of the particles outer shell practically was not changing. Methane present in the mixture with acetylene in decomposition significantly increased the particles size and reduced both the specific outer surface and the microporous surface of the soot particles shell. It is shown that the proposed method for analyzing distributions of the acetylene soot specific surface area over the pore radii makes it possible to estimate with high accuracy particle sizes, total soot specific surface area and contribution of various factors forming this surface

The work was supported by the Russian Science Foundation (agreement no. 21-19-00390, https://rscf.ru/project/21-19-00390)

Please cite this article in English as:

Shkolnikov E.I., Grigorenko A.V., Lipatova I.A., et al. Methane impurity effect in the acetylene decomposition on size and morphology of the appearing soot particles. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2023, no. 2 (107), pp. 110--125 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2023-2-110-125

References

[1] Komarova T.V. Poluchenie uglevodorodnykh materialov [Production of hydrocarbon materials]. Moscow, MCTUR Publ., 2001.

[2] Surovikin Yu.V., Shaitanov A.G., Lavrenov A.V., et al. New approaches to the production of acetylene carbon black. AIP Conf. Proc., 2020, vol. 2301, no. 1, art. 040015. DOI: https://doi.org/10.1063/5.0033038

[3] Lee S.M., Lee S.H., Kim S.H., et al. Analysis of pore formation and development in carbon blacks activated in a CO2 gas atmosphere through microstructural observation. Carbon Lett., 2021, vol. 31, no. 6, pp. 1317--1326. DOI: https://doi.org/10.1007/s42823-021-00284-9

[4] Kaisheva A., Gamburtsev S., Iliev I. Elektrokhimicheskie istochniki toka [Electrochemical current sources]. Praga, 1975, pp. 174--177.

[5] Shaytura N.S., Shkolnikov E.I., Grigorenko A.V., et al. Peculiarities of structure formation of soot-fluoroplastic gas-diffusion layers in air electrodes of fuel cells. Elektrokhimicheskaya energetika [Electrochemical Energetics], 2008, vol. 8, no. 2, pp. 67--72 (in Russ.).

[6] Davydova E.S., Atamanyuk I.N., Ilyukhin A.S., et al. Nitrogen-doped carbonaceous catalysts for gas-diffusion cathodes for alkaline aluminum-air batteries. J. Power Sources, 2016, vol. 306, pp. 329--336. DOI: https://doi.org/10.1016/j.jpowsour.2015.11.112

[7] Singh M., Vander Wal R.L. Nanostructure quantification of carbon blacks. C, 2019, vol. 5, no. 1, art. 2. DOI: https://doi.org/10.3390/c5010002

[8] Zuev V.P., Mikhaylov V.V. Proizvodstvo sazhi [Production of soot]. Moscow, Khimiya Publ., 1965.

[9] Fenelonov V.B. Vvedenie v fizicheskuyu khimiyu formirovaniya supramolekulyarnoy struktury adsorbentov i katalizatorov [Introduction to the physical chemistry supramolecular structure formation of of adsorbents and catalysts]. Novosibirsk, SB RAS Publ., 2004.

[10] Drakon A.V., Eremin A.V., Gurentsov E.V., et al. Optical properties and structure of acetylene flame soot. Appl. Phys. B, 2021, vol. 127, no. 6, art. 81. DOI: https://doi.org/10.1007/s00340-021-07623-8

[11] Shkolnikov E.I., Volkov V.V. Obtaining vapor desorption isoterms without monitoring pressure. DAN, 2001, vol. 378, no. 4, pp. 507--510 (in Russ.).

[12] Shkolnikov E.I., Sidorova E.V., Malakhov A.O., et al. Estimation of pore size distribution in MCM-41-type silica using a simple desorption technique. Adsorption, 2011, vol. 17, no. 6, pp. 911--918. DOI: https://doi.org/10.1007/s10450-011-9368-9

[13] Shkolnikov E.I., Shaitura N.S., Vlaskin M.S. Structural properties of boehmite produced by hydrothermal oxidation. J. Supercrit. Fluids, 2013, vol. 73, pp. 10--17. DOI: https://doi.org/10.1016/j.supflu.2012.10.011

[14] Dobele G., Vervikishko D., Volperts A., et al. Characterization of the pore structure of nanoporous activated carbons produced from wood waste. Holzforschung, 2013, vol. 67, iss. 5, pp. 587--594. DOI: https://doi.org/10.1515/hf-2012-0188

[15] Shkolnikov E.I., Sidorova E.V., Shaitura N.S., et al. Enhanced method for study of materials nanoporous structure. In: Handbook of functional nanomaterials. Vol. 2. Characterization and reliability. Nova Science, 2013, pp. 61--84.

[16] Vervikishko D.E., Yanilkin I.V., Dobele G.V., et al. Activated carbon for supercapacitor electrodes with an aqueous electrolyte. High Temp., 2015, vol. 53, no. 5, pp. 758--764. DOI: https://doi.org/10.1134/S0018151X15050272

[17] Knorre V.G., Snegireva T.D., Tekunova T.V., et al. Study on thermal decomposition of acetylene and the properties of resulting carbon black under constant volume bomb conditions. Fizika goreniya i vzryva, 1972, no. 4, pp. 532--535 (in Russ.).

[18] Emelianov A.V., Eremin A.V., Mikheeva E.Yu., et al. On the possibility of promoting a detonation condensation wave in acetylene with methane additions. Dokl. Phys. Chem., 2020, vol. 490, no. 1, pp. 1--3. DOI: https://doi.org/10.1134/S0012501620010017

[19] Eremin A.V., Mikheyeva E.Yu., Selyakov I.N. Influence of methane addition on soot formation in pyrolysis of acetylene. Combust. Flame, 2018, vol. 193, pp. 83--91. DOI: https://doi.org/10.1016/j.combustflame.2018.03.007