Effect of Filler on the Deformation of Polydimethylsiloxane Composites under an Electric Field

Authors: Kuznetsov N.M., Banin E.P., Krupnin A.E., Krasheninnikov S.V., Vdovichenko A.Yu., Chvalun S.N. Published: 05.01.2023
Published in issue: #6(105)/2022  
DOI: 10.18698/1812-3368-2022-6-123-143

Category: Chemistry | Chapter: Physical Chemistry  
Keywords: stimuli-responsive materials, elastomers, composites, Maxwell pressure, dielectric spectroscopy, hyperelastic materials, Yeoh model


The study considers some aspects of the development of new stimuliresponsive materials capable to reversible deformation under an electric field due to the Maxwell pressure. To increase the response of the material to an external stimulus, an approach of polymer composites formation was chosen. Particles of various nature and shape were considered as fillers: powders of iron, montmorillonite and cellulose. Composite elastomeric materials based on polydimethylsiloxane with a low filler content of 5 wt% have been obtained. The morphology of the filler particles was confirmed by electron microscopy. Mechanical properties of the materials in uniaxial tests were studied. The Young’s modulus and constants for the 3-parameter Yeoh model in the range of deformations up to 800 % were determined. The electrophysical properties of the materials, as well as their response to an electric field at different strengths of 0.84 and 2.5 kV/mm have been studied. The effect of the filler nature on the conductivity and permittivity of composite materials was revealed. The data of mechanical and dielectric studies indicate that the filler concentration is below the percolation threshold for all composites. The composite with cellulose exhibits the greatest response to an external stimulus over the considered materials, which is determined by the balance of two factors: the value of Young’s modulus and the values of electrophysical characteristics. Directions for further research were determined and the prospects for the dielectric elastomers creation with predetermined properties were briefly discussed

The study was financially supported by state assignment in National Research Center "Kurchatov Institute"

Please cite this article in English as:

Kuznetsov N.M., Banin E.P., Krupnin A.E., et al. Effect of filler on the deformation of polydimethylsiloxane composites under an electric field. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2022, no. 6 (105), pp. 123--143 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2022-6-123-143


[1] Acome E., Mitchell S.K., Morrissey T.G., et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science, 2018, vol. 359, no. 6371, pp. 61--65. DOI: https://doi.org/10.1126/science.aao6139

[2] Qiu Y., Zhang E., Plamthottam R., et al. Dielectric elastomer artificial muscle: materials innovations and device explorations. Acc. Chem. Res., 2019, vol. 52, iss. 2, pp. 316--325. DOI: https://doi.org/10.1021/acs.accounts.8b00516

[3] Shintake J., Cacucciolo V., Floreano D., et al. Soft robotic grippers. Adv. Mater., 2018, vol. 30, iss. 29, art. 1707035. DOI: https://doi.org/10.1002/adma.201707035

[4] Mannsfeld S.C.B., Tee B.C.-K., Stoltenberg R.M., et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Mater., 2010, vol. 9, no. 10, pp. 859--864. DOI: https://doi.org/10.1038/nmat2834

[5] Araromi O.A., Rosset S., Shea H.R. High-resolution, large-area fabrication of compliant electrodes via laser ablation for robust, stretchable dielectric elastomer actuators and sensors. ACS Appl. Mater. Interfaces, 2015, vol. 7, iss. 32, pp. 18046--18053. DOI: https://doi.org/10.1021/acsami.5b04975

[6] Cacucciolo V., Shintake J., Kuwajima Y., et al. Stretchable pumps for soft machines. Nature, 2019, vol. 572, pp. 516--519. DOI: https://doi.org/10.1038/s41586-019-1479-6

[7] Park J., Choi S., Janardhan A.H., et al. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci. Transl. Med., 2016, vol. 8, no. 344, p. 344ra86. DOI: https://doi.org/10.1126/scitranslmed.aad8568

[8] O’Halloran A., O’Malley F., McHugh P. A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys., 2008, vol. 104, iss. 7, art. 071101. DOI: https://doi.org/10.1063/1.2981642

[9] Liu Y., Liu L., Zhang Z., et al. Dielectric elastomer film actuators: characterization, experiment and analysis. Smart Mater. Struct., 2009, vol. 18, no. 9, art. 095024. DOI: https://doi.org/10.1088/0964-1726/18/9/095024

[10] He J., Chen Z., Xiao Y., et al. Intrinsically anisotropic dielectric elastomer fiber actuators. ACS Materials Lett., 2022, vol. 4, no. 3, pp. 472--479. DOI: https://doi.org/10.1021/acsmaterialslett.1c00742

[11] Gerratt A.P., Balakrisnan B., Penskiy I., et al. Dielectric elastomer actuators fabricated using a micro-molding process. Smart Mater. Struct., 2014, vol. 23, no. 5, art. 055004. DOI: https://doi.org/10.1088/0964-1726/23/5/055004

[12] Akbari S., Rosset S., Shea H.R. More than 10-fold increase in the actuation strain of silicone dielectric elastomer actuators by applying prestrain. EAPAD, 2013, art. 86871P. DOI: https://doi.org/10.1117/12.2009912

[13] Zakaria S., Morshuis P.H.F., Benslimane M.Y., et al. The electrical breakdown strength of pre-stretched elastomers, with and without sample volume conservation. Smart Mater. Struct., 2015, vol. 24, no. 5, art. 055009. DOI: https://doi.org/10.1088/0964-1726/24/5/055009

[14] Caspari P., Dunki S.J., Nuesch F.A., et al. Dielectric elastomer actuators with increased dielectric permittivity and low leakage current capable of suppressing electromechanical instability. J. Mater. Chem. C, 2018, vol. 6, no. 8, pp. 2043--2053. DOI: https://doi.org/10.1039/c7tc05562e

[15] Sheima Y., Caspari P., Opris D.M. Artificial muscles: dielectric elastomers responsive to low voltages. Macromol. Rapid Commun., 2019, vol. 40, no. 16, art. 1900205. DOI: https://doi.org/10.1002/marc.201900205

[16] Liu P., Li L., Wang L., et al. Effects of 2D boron nitride (BN) nanoplates filler on the thermal, electrical, mechanical and dielectric properties of high temperature vulcanized silicone rubber for composite insulators. J. Alloys Compd., 2019, vol. 774, pp. 396--404. DOI: https://doi.org/10.1016/j.jallcom.2018.10.002

[17] Yang D., Zhang L., Liu H., et al. Lead magnesium niobate-filled silicone dielectric elastomer with large actuated strain. J. Appl. Polym. Sci., 2012, vol. 125, no. 3, pp. 2196--2201. DOI: https://doi.org/10.1002/app.36428

[18] Zhao H., Zhang L., Yang M.H., et al. Temperature-dependent electro-mechanical actuation sensitivity in stiffness-tunable BaTiO3/polydimethylsiloxane dielectric elastomer nanocomposites. Appl. Phys. Lett., 2015, vol. 106, no. 9, art. 092904. DOI: https://doi.org/10.1063/1.4914012

[19] Ruan M., Yang D., Guo W., et al. Improved electromechanical properties of brominated butyl rubber filled with modified barium titanate. RSC Adv., 2017, vol. 7, no. 59, pp. 37148--37157. DOI: https://doi.org/10.1039/c7ra05667b

[20] Jiang L., Kennedy D., Jerrams S., et al. Enhancement of dielectric properties with the addition of bromine and dopamine modified barium titanate particles to silicone rubber. MRS Communications, 2016, vol. 6, no. 4, pp. 437--441. DOI: https://doi.org/10.1557/mrc.2016.53

[21] Liu H., Zhang L., Yang D., et al. Mechanical, dielectric, and actuated strain of silicone elastomer filled with various types of TiO2. Soft Materials, 2013, vol. 11, no. 3, pp. 363--370. DOI: https://doi.org/10.1080/1539445X.2012.661821

[22] Zhang Y.Y., Wang G.L., Zhang J., et al. Preparation and properties of core-shell structured calcium copper titanate@polyaniline/silicone dielectric elastomer actuators. Polym. Compos., 2017, vol. 40, no. S1, pp. E62--E68. DOI: https://doi.org/10.1002/pc.24479

[23] Wang G.L., Zhang Y.Y., Duan L., et al. Property reinforcement of silicone dielectric elastomers filled with self-prepared calcium copper titanate particles. J. Appl. Polym. Sci., 2015, vol. 132, no. 39, art. 42613. DOI: https://doi.org/10.1002/app.42613

[24] Panahi-Sarmad M., Chehrazi E., Noroozi M., et al. Tuning the surface chemistry of graphene oxide for enhanced dielectric and actuated performance of silicone rubber composites. ACS Appl. Electron. Mater., 2019, vol. 1, no. 2, pp. 198--209. DOI: https://doi.org/10.1021/acsaelm.8b00042

[25] Tian M., Wei Z., Zan X., et al. Thermally expanded graphene nanoplates/polydimethylsiloxane composites with high dielectric constant, low dielectric loss and improved actuated strain. Compos. Sci. Technol., 2014, vol. 99, pp. 37--44. DOI: https://doi.org/10.1016/j.compscitech.2014.05.004

[26] Liu L., Lei Y., Zhang Z., et al. Fabrication of PDA@SiO2@rGO/PDMS dielectric elastomer composites with good electromechanical properties. React. Funct. Polym., 2020, vol. 154, art. 104656. DOI: https://doi.org/10.1016/j.reactfunctpolym.2020.104656

[27] Rackl M. Material testing and hyperelastic material model curve fitting for Ogden, Polynomial and Yeoh models. Proc. ScilabTEC, 2015. DOI: http://dx.doi.org/10.13140/RG.2.2.29552.25600/1

[28] Ploehn H.J., Liu C. Quantitative analysis of montmorillonite platelet size by atomic force microscopy. Ind. Eng. Chem. Res., 2006, vol. 45, no. 21, pp. 7025--7034. DOI: https://doi.org/10.1021/ie051392r

[29] Kuznetsov N.M., Shevchenko V.G., Stolyarova D.Y., et al. Dielectric properties of modified montmorillonites suspensions in polydimethylsiloxane. J. Appl. Polym. Sci., 2018, vol. 135, no. 32, art. 46614. DOI: https://doi.org/10.1002/app.46614

[30] Bogdanova O.I., Chvalun S.N. Polysaccharide-based natural and synthetic nanocomposites. Polym. Sci. Ser. A, 2016, vol. 58, no. 5, pp. 629--658. DOI: https://doi.org/10.1134/S0965545X16050047

[31] Bogdanova O.I., Istomina A.P., Chvalun S.N. Composites based on chitin nanoparticles and biodegradable polymers for medical use: preparation and properties. Nanotechnol. Russia, 2021, vol. 16, no. 1, pp. 42--68. DOI: https://doi.org/10.1134/s2635167621010031

[32] Kuznetsov N.M., Bakirov A.V., Banin E.P., et al. In situ X-ray analysis of montmorillonite suspensions in polydimethylsiloxane: orientation in shear and electric field. Colloids Surf. A Physicochem. Eng. Asp., 2021, vol. 622, art. 126663. DOI: https://doi.org/10.1016/j.colsurfa.2021.126663

[33] Kuznetsov N.M., Kovaleva V.V., Zagoskin Y.D., et al. Specific features of the porous polymeric particle composites application as fillers for electrorheological fluids. Nanotechnol. Russia, 2021, vol. 16, no. 6, pp. 840--846. DOI: https://doi.org/10.1134/S2635167621060148

[34] Belkin A.E., Dashtiev I.Z., Kostromitskikh A.V. Determining polyurethane elastic parameters at large strains using torsion and tensile test results. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2016, no. 8, pp. 3--10 (in Russ.). DOI: https://doi.org/10.18698/0536-1044-2016-8-3-10

[35] Xavier M.S., Fleming A.J., Yong Y.K. Finite element modeling of soft fluidic actuators: overview and recent developments. Adv. Intell. Syst., 2021, vol. 3, no. 2, art. 2000187. DOI: https://doi.org/10.1002/aisy.202000187

[36] Vdovichenko A.Y., Kuznetsov N.M., Shevchenko V.G., et al. The role of charge states in the self-organization of detonation nanodiamonds nanoparticles. Diam. Relat. Mater., 2020, vol. 107, art. 107903. DOI: https://doi.org/10.1016/j.diamond.2020.107903

[37] Kuznetsov N.M., Vdovichenko A.Y., Bakirov A.V., et al. The size effect of faceted detonation nanodiamond particles on electrorheological behavior of suspensions in mineral oil. Diam. Relat. Mater., 2022, vol. 125, art. 108967. DOI: https://doi.org/10.1016/j.diamond.2022.108967