|

Synthesising Copper Oxide Nanoparticles and Investigating the Effect of Dispersion Medium Parameters on their Aggregate Stability

Authors: Blinov A.V., Gvozdenko А.А., Golik A.B., Blinova А.А., Slyadneva K.S., Pirogov M.A., Maglakelidze D.G.  Published: 09.08.2022
Published in issue: #4(103)/2022  
DOI: 10.18698/1812-3368-2022-4-95-109

 
Category: Chemistry | Chapter: Physical Chemistry  
Keywords: nanoparticles, copper oxide, gelatin, X-ray diffraction analysis, dynamic light scattering, active acidity of a medium, ionic strength

Abstract

We developed a technique for synthesising gelatin-stabilised copper oxide nanoparticles. The method behind the synthesis was direct deposition, while the copper oxide precursors used were copper sulphate, chloride and acetate. We employed gelatin as a stabiliser. We employed X-ray diffraction analysis to study the effect that the copper-containing precursor may have on the phase composition in the samples. We found that using copper(II) chloride yields two different modifications of copper(II) hydroxychloride (atacamite and clinoatacamite), while copper(II) sulphate yields brochantite. We established that copper oxide forms only when using copper(II) acetate. Dynamic light scattering data shows that a monomodal size distribution with an average hydrodynamic radius of 61 nm characterises the copper oxide nanoparticles. Investigating the effect that active acidity of the medium may have on the aggregate stability of gelatin-stabilized copper oxide nanoparticles showed that the sample is stable in the pH range of 6.8--11.98. The paper presents the mechanism behind the effect of active acidity of a medium on stability of copper oxide nanoparticles. We investigated how the ionic strength of the solution affects the stability of copper oxide nanoparticle sol. We determined that Ca2+ ions have the greatest effect on the sample

Please cite this article in English as:

Blinov A.V., Gvozdenko A.A., Golik A.B., et al. Synthesising copper oxide nanoparticles and investigating the effect of dispersion medium parameters on their aggregate stability. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2022, no. 4 (103), pp. 95--109 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2022-4-95-109

References

[1] Khan I., Saeed K., Khan I. Nanoparticles: properties, applications and toxicities. Arab. J. Chem., 2019, vol. 12, iss. 7, pp. 908--931. DOI: https://doi.org/10.1016/j.arabjc.2017.05.011

[2] Luo X., Morrin A., Killard A.J., et al. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis, 2006, vol. 18, iss. 4, pp. 319--326. DOI: https://doi.org/10.1002/elan.200503415

[3] Pereira L., Mehboob F., Stams A.J.M., et al. Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation. Crit. Rev. Biotechnol., 2015, vol. 35, iss. 1, pp. 114--128. DOI: https://doi.org/10.3109/07388551.2013.819484

[4] Falcaro P., Riccoa R., Yazdib A., et al. Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev., 2016, vol. 307, part 2, pp. 237--254. DOI: https://doi.org/10.1016/j.ccr.2015.08.002

[5] Jamkhande P.G., Ghule N.W., Bamer A.H., et al. Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J. Drug. Deliv. Sci. Technol., 2019, vol. 53, art. 101174. DOI: https://doi.org/10.1016/j.jddst.2019.101174

[6] Lu L., Shen Y., Chen X., et al. Ultrahigh strength and high electrical conductivity in copper. Science, 2004, vol. 304, no. 5669, pp. 422--426. DOI: https://doi.org/10.1126/science.1092905

[7] Trus I., Halysh V., Gomelya M., et al. Techno-economic feasibility for water purification from copper ions. Ecol. Eng. Environ. Technol., 2021, vol. 22, iss. 3, pp. 27--34. DOI: https://doi.org/10.12912/27197050/134869

[8] Marmiroli M., Pagano L., Rossi R., et al. Copper oxide nanomaterial fate in plant tissue: nanoscale impacts on reproductive tissues. Environ. Sci. Technol., 2021, vol. 55, iss. 15, pp. 10769--10783. DOI: https://doi.org/10.1021/acs.est.1c01123

[9] Camacho-Flores B.A., Martinez-Alvarez O., Arenas-Arrocena M.C., et al. Copper: synthesis techniques in nanoscale and powerful application as an antimicrobial agent. J. Nanomater., 2015, vol. 2015, art. 415238. DOI: https://doi.org/10.1155/2015/415238

[10] Ashajyothi C., Harish Handral K., Dubey N., et al. Antibiofilm activity of biogenic copper and zinc oxide nanoparticles-antimicrobials collegiate against multiple drug resistant bacteria: a nanoscale approach. J. Nanostruct. Chem., 2016, vol. 6, no. 4, pp. 329--341. DOI: https://doi.org/10.1007/s40097-016-0205-2

[11] Chhipa H. Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett., 2017, vol. 15, no. 1, pp. 15--22. DOI: https://doi.org/10.1007/s10311-016-0600-4

[12] Kano E., Kvashnin D.G., Sakai S., et al. One-atom-thick 2D copper oxide clusters on grapheme. Nanoscale, 2017, vol. 9, iss. 11, pp. 3980--3985. DOI: https://doi.org/10.1039/C6NR06874J

[13] Samarasekara P., Kumara N., Yapa N.U.S. Sputtered copper oxide (CuO) thin films for gas sensor devices. J. Phys.: Condens. Matter, 2006, vol. 18, no. 8, pp. 2417--2420. DOI: https://doi.org/10.1088/0953-8984/18/8/007

[14] Tiwari A.D., Mishra A.K., Mishra S.B., et al. Stabilisation of silver and copper nanoparticles in a chemically modified chitosan matrix. Carbohydr. Polym., 2013, vol. 92, iss. 2, pp. 1402--1407. DOI: https://doi.org/10.1016/j.carbpol.2012.10.008

[15] Rubilar O., Rai M., Tortella G., et al. Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol. Lett., 2013, vol. 35, no. 9, pp. 1365--1375. DOI: https://doi.org/10.1007/s10529-013-1239-x

[16] Martin-Garcia I., Diaz-Reyes G., Sloan G., et al. Sulfur-stabilised copper nanoparticles for the aerobic oxidation of amines to imines under ambient conditions. J. Mater. Chem. A, 2021, vol. 9, iss. 18, pp. 11312--11322. DOI: https://doi.org/10.1039/D0TA12621G

[17] Bezza F.A., Tichapondwa S.M., Chirwa E.M.N. Fabrication of monodispersed copper oxide nanoparticles with potential application as antimicrobial agents. Sci. Rep., 2020, vol. 10, no. 1, art. 16680. DOI: https://doi.org/10.1038/s41598-020-73497-z

[18] Wang X., Qiao C., Song K., et al. Hofmeister effect on the viscosity properties of gelatin in dilute solutions. Colloids Surf. B, 2021, vol. 206, art. 111944. DOI: https://doi.org/10.1016/j.colsurfb.2021.111944

[19] Nitsuwat S., Zhang P., Ng K., et al. Fish gelatin as an alternative to mammalian gelatin for food industry: a meta-analysis. LWT, 2021, vol. 141, art. 110899. DOI: https://doi.org/10.1016/j.lwt.2021.110899

[20] Feng X., Dai H., Ma L., et al. Effect of drying methods on the solubility and amphiphilicity of room temperature soluble gelatin extracted by microwave-rapid freezing-thawing coupling. Food Chem., 2021, vol. 351, art. 129226. DOI: https://doi.org/10.1016/j.foodchem.2021.129226

[21] Blinov A.V., Gvozdenko A.A., Yasnaya M.A., et al. Synthesing and studying the structure of nanoscale copper (II) oxide stabilized by polyethylene glycol. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2020, no. 3 (90), pp. 56--70 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2020-3-56-70

[22] Trefalt G. Derivation of the inverse Schulze --- Hardy rule. Phys. Rev. E, 2016, vol. 93, iss. 3, art. 032612. DOI: https://doi.org/10.1103/physreve.93.032612