Thermodynamic Evaluation of Diamidophosphite Dismutation Capability

Authors: Slitikov P.V. Published: 22.11.2017
Published in issue: #6(75)/2017  
DOI: 10.18698/1812-3368-2017-6-96-102

Category: Chemistry | Chapter: Organic Chemistry  
Keywords: dismutation, diamidophenylphosphites, thermodynamic state functions, NMR-spectroscopy

This work presents the results of calculations providing the thermodynamic state functions (Δf298, Sº298) for various classes of diamidophenylphosphites, monoamidodiphenylphosphites and full amides of phosphorous acid where the amide group is presented by different secondary amides. The thermodynamic capability of dismutation of diamidophenylphosphites was evaluated according to the calculations of Gibbs energy Δr298 for the corresponding processes. The results of theoretical calculations firmly correlate with the experimental data


[1] Nifantyev E.E., Rasadkina E.N., Slitikov P.V., Vasyanina L.K. Dismutation of diamidoarylphosphites. Phosphorus, Sulfur, and Silicon and the Related Elements, 2003, vol. 178, iss. 11, pp. 2465–2477. DOI: 10.1080/714040960

[2] Rasadkina E.N., Slitikov P.V., Nifantyev E.E. Dismutation of arylene phosphorodiamidites: Specific features and aspects of preparative use. Russian Journal of General Chemistry, 2006, vol. 76, iss. 2, pp. 183–197. DOI: 10.1134/S1070363206020046

[3] Nifantyev E.E., Slitikov P.V., Rasadkina E.N. Synthesis of arylenephosphamacrocycles using tri- and pentavalent phosphorus compounds. Russian Chemical Reviews, 2007, vol. 76, no. 4, pp. 327–338. DOI: 10.1070/RC2007v076n04ABEH003667

[4] Knyazeva I.R., Burilov A.R., Pudovik M.A., Khabikher V.D. Phosphoruscontaining macrocyclic compounds: Synthesis and properties. Russian Chemical Reviews, 2013, vol. 82, no. 2, pp. 150–186. DOI: 10.1070/RC2013v082n02ABEH004296

[5] Slitikov P.V., Evdokimenkova Yu.B., Rasadkina E.N., Vasyanina L.K., Nifantiev E.E. Synthesis and characterization of phosphomacrocycles on the basis of 2,7-dihydroxynaphthalene. Makrogeterotsikly [Macroheterocycles], 2011, vol. 4, no. 4, pp. 311−323 (in Russ.).DOI: 10.6060/mhc2011.4.07 Available at: https://macroheterocycles.isuct.ru/en/annot/t04n04/311

[6] Slitikov P.V., Rasadkina E.N., Vasyanina L.K., Nifantyev E.E. 2,6-Dihydroxynaphthalene in the synthesis of naphthophosphacyclophanes. Makrogeterotsikly [Macroheterocycles], 2013, vol. 6, no. 2, pp. 170−179 (in Russ.). DOI: 10.6060/mhc130117s Available at: https://macroheterocycles.isuct.ru/en/annot/t06n02/170

[7] Slitikov P.V., Rasadkina E.N., Vasyanina L.K., Nifantev E.E. Cyclic bisamidophosphites based on 1,6-dihydroxynaphthalene. Russian Chemical Bulletin, 2013, vol. 62, iss. 9, pp. 2023–2031. DOI: 10.1007/s11172-013-0293-9

[8] Nifantyev E.E., Rasadkina E.N., Evdokimova Yu.B., Stash A.I., Belsky V.K., Vasyanina L.K. Cyclo[bis(1,7-naphthylenedialkylamidophosphites). Heteroatom Chem., 2003, vol. 14, iss. 5, pp. 404−412. DOI: 10.1002/hc.10143

[9] Nifantiev E.E., Rasadkina E.N., Evdokimenkova Yu.B. Synthesis of cavity systems by cyclophosphorylation of 1,7-dihydroxynaphthalene with phosphorous triamides. Russian Chemical Bulletin, 2001, vol. 50, no. 5, pp. 923–924. DOI: 10.1023/A:1011392017095

[10] Lyubimenko V.A., Petrukhina N.N., Tumanyan B.P., Kolesnikov I.M. Thermodynamic parameters of conversion reactions of some heavy oil components under the action of steam and heat. Chemistry and Technology of Fuels and Oils, 2012, vol. 48, iss. 4, pp. 292–301. DOI: 10.1007/s10553-012-0371-y

[11] Movsun-zade N.Ch. Саlculation of thermodynamic parameter reaction of synthesis of acrylonitrile. Bash. khim. zh. [Bashkir Chemistry Journal], 2011, vol. 18, no. 3, pp. 100−102.

[12] Rocha G.B., Freire R.O., Simas A.M., Stewart J.J.P. RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br and I. J. Comp. Chem., 2006, vol. 27, iss. 10, pp. 1101−1111. DOI: 10.1002/jcc.20425