|

Recommendations for using computating methods of percutaneous human body’s absorption of uranium hexafluoride

Authors: Babenko S.P. , Bad’in A.V.  Published: 04.04.2016
Published in issue: #2(65)/2016  
DOI: 10.18698/1812-3368-2016-2-114-125

 
Category: Chemistry | Chapter: Inorganic Chemistry  
Keywords: uranium hexafluoride, uranium, fluoride, mathematical simulation, percutaneous injection

The main purpose of this work is to present a technique for calculating the parameters characterizing the radiation effects of uranium hexafluoride UF6 (the only gaseous product of uranium) on the human body. Uranium hexafluoride is used in enriching natural uranium with isotope U235. We examined the situation of percutaneous human body’s absorption of these products during the production mode. We solved some problems to ensure labour safety at enrichment plants. Moreover, we calculated the following values: radiation dose and the maximum permissible activity and weight values of annual uranium skin absorption, as well as the maximum allowable volume density of activity in the indoor air, the maximum allowable surface density of uranium activity on the skin and industrial surfaces; the volume density of uranium atoms concentration in the air; power flux density of the uranium atoms source F0. In calculating these parameters we based on computing methods of describing percutaneous penetration of uranium into the human body and maximum permissible dose of uranium given in the rules of radiation safety (NRB-99).

References

[1] Kikoin I.K., ed. Tablitsy fizicheskikh velichin. Spravochnik [Tables of Physical Quantities. Reference Book]. Moscow, Atomizdat Publ., 1976. 1008 p.

[2] Grigor’ev G.Yu., Nadezhdinskiy A.I., Nabiev Sh.Sh. et al. Ekspress-metody izmereniya stepeni obogashcheniya geksaftorida urana i sledovykh kolichestv UF6 v HF atmosfere na osnove diodnykh lazerov blizhnego i srednego IK-diapazona [Express Methods of Measuring the Uranium Hexafluoride Enrichment Degree and Trace Amounts of UF6 in the ОТ Atmosphere Based on Near and Mid-Infrared Diode Lasers]. Moscow, 2006. Preprint no. IAE 6395/12.

[3] Mirkhaydarov A.Kh. Method and Means for Measuring Uranium Hexafluoride in the Air. Tezisy dokladov na mezhdunarodnoy konferentsii ‘Radioaktivnost’pri yadernykh vzryvakh i avariyakh" [Abstracts of the International Conference "Radioactivity in Nuclear Explosions and Accidents"]. St. Petersburg, Gidrometeoizdat Publ., 2000, pp. 92 (in Russ.).

[4] Gasteva G.N., Bad’in V.I., Molokanov A.A. et al. Klinicheskaya toksikologiya khimicheskikh soedineniy urana pri khronicheskoy ekspozitsii [Clinical Toxicology of Chemical Uranium Compounds at Chronic Exposure]. Radiatsionnaya meditsina. Vol. 2 [Radiation Medicine]. Moscow, IzdAt Publ., 2001, pp. 369-389.

[5] Kalistratova V.S., Belyaev I.K., Zhorova E.S., Nisimov P.G., Parfenova I.M., Tishchenko G.S., Tsapkov M.M. Ed. by Kalistratova V.S. Radiobiologiya inkorporirovannykh radionuklidov [Radiobiology of Incorporated Radionuclides]. Moscow, FMBTs im. A.I. Burnazyana FMBA Rossii Publ., 2012. 464 p.

[6] Normy radiatsionnoy bezopasnosti (NRB-99). Gigienicheskie normativy [Radiation Safety Standards (NRB-99). Hygienic Regulations]. Moscow, Tsentr sanitarno-epidemiologicheskogo normirovaniya, gigienicheskoy sertifikatsii i ekspertizy Minzdrava Rossii [Sanitary-Epidemiological Rating, Hygienic Certification and Examination Center of Russian Public Health Ministry] Publ., 1999. 116 p.

[7] Rodionov Yu.A. Osnovy dozimetrii i zashchity ot izlucheniy [Fundamentals of Dosimetry and Radiation Protection]. St. Petersburg, YaEI, Sosnovyy Bor Publ., 142 p.

[8] Babenko S.P., Bad’in A.V. Inhaler injection and injection through skin of toxic substances in a human organizm under regular industry conditions at factories of nuclear industry. Matematicheskoe modelirovanie [Mathematical Models and Computer Simulations], 2006, vol. 18, no. 3, pp. 13-22 (in Russ.).

[9] Babenko S.P., Bad’in A.V. Methods for Determining the Distribution Function for the Radius of Uranyl-fluoride Aerosol Particles. Atomic Energy, 2005, vol. 99, iss. 5, pp. 787-791. DOI: 10.1007/s10512-006-0017-4

[10] Babenko S.P., Bad’in A.V. On percutaneous injection of toxic substances into the human organism from the workplace atmosphere. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science & Education of the Bauman MSTU. Electronic Journal], 2014, no. 1. Available at: http://technomag.bmstu.ru/doc/671133.html DOI: 10.7463/0114.0671133

[11] Khokhryakov V.V., Vostrotin V.V., Khokhryakov V.F. Improving the Quality of Geophysical Study Processing Using Maximum Likelihood Method. Voprosy radiatsionnoy bezopasnosti [Radiation Safety Problems], 2010, no. 1, pp. 13-22 (in Russ.).

[12] ICRP, 1991b. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60, Ann. ICRP 21 (1-3).

[13] Babenko S.P. Estimaion of the Height Distribution of the Uranium-Contained Agent Concentrations in the Air of the Industrial Premises under Different Values of the Air Interchange Coefficient. Meditsinskaya radiologiya i radiatsionnaya bezopasnost’ [Journal of Medical Radiology and Radiation Safety], 2005, vol. 50, no. 5, pp. 16-21 (in Russ.).