Calculation of Radiative Parameters for A1S+ — X1S+ and B1Pu — X1SE+ Electronic Transitions of Potassium Dimer

Authors: Smirnov A.D. Published: 17.08.2013
Published in issue: #2(49)/2013  

Category: Chemistry  
Keywords: potential energy curve, radial wave equation, Einstein coefficients, oscillator strengths, radiative lifetime of the excited state, Franck-Condon factors

The radiative parameters are calculated: Einstein coefficients of spontaneous radiation, oscillator strengths for absorption, Frank-Condon factors, wavenumbers of rotational lines of vibrational-rotational bands in electronic transitions A1S+ - X1S+ (0 < v' < 20, 0 < v'' < 40, j' = 0,30,50,80,100), B1Pu - X1S+ (0 < v' < 20, 0 < v'' < 25, j' = 0,43, 59,61,80,100), and also radiative lifetimes for vibrational-rotational levels of excited electronic states of potassium dimer are determined. The vibrational-rotational energies and the appropriate wave functions for the ground and excited electronic states are found as a result ofnumerical solving of the radial wave equation based on constructed potential curves. The calculated radiative parameters and lifetimes are compared with experimental and theoretical data from literature.


[1] Johnson D.Е., Eden I.G. Continua in the visible absorption spectrum of K2. J. Opt. Soc. Am., 1985, vol. 2, no. 5, pp. 721–728.

[2] Vetchinkin S.I., Umanskii I.M. Diffuse bands in 13Σ+u −23Πg spectra of alkali metal dimers. Opt. Spectrosc., 1991, vol. 72, no. 1, pp. 16–18.

[3] Smirnov A.D. Calculation of spectroscopic constants and radiative parameters for A1Σ+u − X1Σ+g and B1Πu − X1Σ+g electronic transitions of a sodium dimer. Opt. Spectrosc., 2010, vol. 109, no. 5, pp. 680–686. doi: 10.1134/S0030400X10110068

[4] Smirnov A.D. Calculation of radiative parameters for the A1Σ+u − X1Σ+g electronic transition of a cesium dimer. J. Appl. Spectrosc., 2010, vol. 77, no. 5, pp. 595–608.

[5] Smirnov A.D. Calculation of spectroscopic constants and radiative parameters for A1Σ+ u − X1Σ+ g and B1Πu − X1Σ+ g electronic transitions of a lithium dimer. Opt. Spectrosc., 2012, vol. 113, no. 4, pp. 387–394.

[6] Smirnov A.D. Calculation of radiative parameters for dimers and mixed dimers of transition metals in the first group of the periodic table. Trudy 6 Vseross. Konf. "Neobratimye protsessy v prirode i tekhnike" [Proc. 6th All Russ. Conf. "Irreversible processes in nature and technology"]. Moscow, 2011, p. 364 (in Russ.).

[7] Heinze J., Scuhle U., Engelke F., Caldwell C.D. Doppler-free polarization spectroscopy of the B1Πu − X1Σ+g band system of K2. J. Chem. Phys., 1987, vol. 87, no. 1, pp. 45–53.

[8] Lyyra A.M., Luh W.T., Li L., Wang H., Stwalley W.C. The A1Σ+u state of the potassium dimer. J. Chem. Phys., 1990, vol. 92, no. 1, pp. 43–52.

[9] Smirnov A.D. Potential curves of the ground electronic states of dimers of sodium, potassium, and cesium. Opt. Spectrosc., 1996, vol. 81, no. 3, pp. 352–357.

[10] Smirnov A.D. The Franck–Condon factors and potential curves of the combining states for the cesium dimer A1Σ+u −X1Σ+ g transition. Opt. Spectrosc., 1995, vol. 78, no. 4, p. 615–621.

[11] Z¨ulicke L. Quantenchemie. Bd. 1. Grundlagen und allgemeine Methoden. Heidelberg, H¨uthig, 1973, 517 p. (Russ. ed.: Tsyulike L. Kvantovaya khimiya. T. 1. Osnovy i obshchie metody. Moscow, Mir Publ., 1976. 512 p.).

[12] Kratzer A. Die ultraroten rotationsspektren der halogenwasserstoffe. Z. Phys, 1920, vol. 3, no. 5, pp. 289–307.

[13] Kemble E.C., Birge R.T., Colby W.F. et al. Molecular Spectra in Gases. Lett. Natl. Res. Council, Washington, D.C., 1930, p. 57.

[14] Laher R.R., Khakoo M.A., Antic-Jovanovic A. Radiative transition parameters for the A1Σ+ u −X1Σ+ g band system of Ag2. J. Mol. Spectrosc., 2008, vol. 248, pp. 111–121.

[15] Kuz’menko H.E., Pirags I.Ya., Prytkov S.E., Stolyarov A.V., Ferber R.S. Calculation of strength for the B1Πu − X1Σ+g electronic transition of the 39K2 system of a potassium dimer with respect to laser induced fluorescence intensities. Izv. Akad. Nauk Latviyskoy SSR. Ser. Fiz. Tekh. Nauk [Proc. Acad. Sci. Lithuanian SSR. Ser. Phys. Tech. Sci.], 1987, no. 4, pp. 3–10 (in Russ.).

[16] Woerdman J.P. A note on the transition dipole moment of alkali dimers. J. Chem. Phys., 1981, vol. 75, no. 11, pp. 5577–5578.

[17] Radtsig A.A., Smirnov B.M. Spravochnik po atomnoy i molekulyarnoy fizike [Handbook on Atomic and Molecular Physics]. Moscow, 1980. 240 p.

[18] Kuznetsova L.A. Electronic transition strengths for diatomic molecules. Spectrosc. Lett., 1987, vol. 20, no. 9, pp. 665–723.

[19] Kuznetsova L.A., Kuz’menko H.E., Kuzyakov Yu. Ya., Plastinin Yu.A. Veroyatnosti opticheskikh perekhodov dvukhatomnykh molekul [Optical transition probabilities for diatomic molecules]. Moscow, Nauka Publ., 1980. 320 p.

[20] Smirnov A.D. Strength of the A1Σ+u − X1Σ+g electronic transition of a cesium dimer. J. Appl. Spectrosc., 1993, vol. 59, nos. 5–6, pp. 837–840.

[21] Luh W.T., Zafiropulos V., Kleiber P.D., Stwalley W.C., Heneghan S. Fluorescence of Na2 and K2 excited by a gold vapor laser. J. Mol. Spectrosc., 1985, vol. 111, pp. 327–343.

[22] Tango W., Zare R.N. Radiative lifetime of the В1Πu state of K2. J. Chem. Phys., 1970, vol. 53, no. 8, pp. 3094–3100.

[23] Lemont S., Giniger R., Flynn G.W. Radiative lifetime and quenching cross section of the B1Πu state of K2 by time correlated single photon counting using a mode-locked He-Ne laser. J. Chem. Phys., 1977, vol. 66, pp. 4509–4515.