|

Role of Biofilms in Microbiologically Influenced Corrosion of Metals

Authors: Lomakina G.Yu. Published: 15.02.2020
Published in issue: #1(88)/2020  
DOI: 10.18698/1812-3368-2020-1-100-125

 
Category: Chemistry | Chapter: Bioorganic Chemistry  
Keywords: microbiologically influenced corrosion (MIC), biocorrosion, biofilms, microorganisms, microbial consortium, biocorrosion mechanisms, extracellular polymer matrix

Data obtained in the recent years on the effect of bio-films in the development of metal microbiologically influenced corrosion (MIC) are summarized. The main way of sessile cells adaptation and survival on metal surfaces lies in formation of biofilms consisting of living cells surrounded by a multicomponent extracellular polymer substance (EPS). Biosystem created possesses new properties that are different from the properties of individual components. Biofilm ways of formation, growth and survival, functions of the extracellular matrix in regard to the microbial consortium and to the metal surface are presented. Mechanisms of biocorrosion involving the electron transmembrane transition from a metal to the living cell cytoplasm, as well as the extracellular pathways of metal oxidation under aerobic and anaerobic conditions, are considered

References

[1] Li Y., Xu D., Chen C., et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review J. Mater. Sci. Technol., 2018, vol. 34, iss. 10, pp. 1713--1718. DOI: https://doi.org/10.1016/j.jmst.2018.02.023

[2] Gaines R.H. Bacterial activity as a corrosive influence in the soil. Ind. Eng. Chem., 1910, vol. 2, iss. 4, pp. 128--130. DOI: https://doi.org/10.1021/ie50016a003

[3] Nelson V.V., Maria O.T., Mamie S.V., et al. Microbiologically influenced corrosion in aluminium alloys 7075 and 2024. In: Aluminium Alloys. IntechOpen, 2017, pp. 225--242.

[4] Wu T., Yan M., Zeng D., et al. Stress corrosion cracking of X80 steel in the presence of sulfate-reducing bacteria. J. Mater. Sci. Technol., 2015, vol. 31, iss. 4, pp. 413--422. DOI: https://doi.org/10.1016/j.jmst.2014.08.012

[5] Wang X., Melchers R.E. Corrosion of carbon steel in presence of mixed deposits under stagnant seawater conditions. J. Loss Prevent Proc., 2017, vol. 45, pp. 29--42. DOI: https://doi.org/10.1016/j.jlp.2016.11.013

[6] Khouzani M.K., Bahrami A., Hosseini-Abari A., et al. Microbiologically influenced corrosion of a pipeline in a petrochemical plant. Metals, 2019, vol. 9, no. 4, pp. 1--14. DOI: https://doi.org/10.3390/met9040459

[7] Flemming H.-C. Biofouling and microbiologically influenced corrosion (MIC) --- an economical and technical overview. In: E. Heitz, W. Sand and H.-C. Flemming (eds.). Microbial Deterioration of Materials. Heidelberg, Springer, 1996, pp. 5--14.

[8] Brennenstuhl A.M., Doherty P.E. The economic impact of microbiologically influenced corrosion at Ontario Hydro’s nuclear plants. In: Microbiologically Influenced Corrosion and Biodeterioration. University of Tennessee, 1990. pp. 7/5--7/10.

[9] Kermani M.B., Harrop D. The impact of corrosion on oil and gas industry. SPE Prod. Facil., 1996, vol. 11, iss. 3, pp. 186--192. DOI: https://doi.org/10.2118/29784-PA

[10] Beech I.B., Gaylarde C.C. Recent advances in the study of biocorrosion --- an overview. Rev. Microbiol., 1999, vol. 30, no. 3, pp. 177--190. DOI: http://dx.doi.org/10.1590/S0001-37141999000300001

[11] McNamara C.J., Perry T.D., Leard R., et al. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks. Biofouling, 2005, vol. 21, iss. 5-6, pp. 257--265. DOI: https://doi.org/10.1080/08927010500389921

[12] Rauch M.E., Graef H.W., Rozenzhak S.M., et al. Characterization of microbial contamination in United States Air Force aviation fuel tanks. J. Ind. Microbiol. Biotechnol., 2006, vol. 33, iss. 1, pp. 29--36. DOI: https://doi.org/10.1007/s10295-005-0023-x

[13] Hagenauer A., Hilpert R., Hack T. Microbiological investigations of corrosion damages in aircraft. Materials and Corrosion, 1994, vol. 45, iss. 6, pp. 355--360. DOI: https://doi.org/10.1002/maco.19940450606

[14] Zhang P., Xu D., Li Y., et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry, 2015, vol. 101, pp. 14--21. DOI: https://doi.org/10.1016/j.bioelechem.2014.06.010

[15] Hardy J.A., Bown J.L. The corrosion of mild steel by biogenic sulfide films exposed to air. Corrosion, 1984, vol. 40, iss. 12, pp. 650--654. DOI: https://doi.org/10.5006/1.3593903

[16] Gieg L.M., Duncan K.E., Suflita J.M. Bioenergy production via microbial conversion of residual oil to natural gas. Appl. Environ. Microbiol., 2008, vol. 74, no. 10, pp. 3022--3029. DOI: https://doi.org/10.1128/AEM.00119-08

[17] Skovhus T.L., Eckert R.B., Rodrigues E. Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry — overview and a North Sea case study. J. Biotechnol., 2017, vol. 256, pp. 31--45. DOI: https://doi.org/10.1016/j.jbiotec.2017.07.003

[18] Jia R., Unsal T., Xu D., et al. Microbiologically influenced corrosion and current mitigation strategies: a state of the art review. Int. Biodeterior. Biodegradation, 2019, vol. 137, pp. 42--58. DOI: https://doi.org/10.1016/j.ibiod.2018.11.007

[19] Kolesnikova N.N., Lukanina Yu.K., Khvatov A.V., et al. Biological corrosion of metal constructions and protection from it. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2013, vol. 16, no. 1, pp. 170--174 (in Russ.).

[20] Li Y., Jia R., Al-Mahamedh H.H., et al. Enhanced biocide mitigation of field biofilm consortia by a mixture of D-amino acids. Front. Microbiol., 2016, vol. 7, art. 896. DOI: https://doi.org/10.3389/fmicb.2016.00896

[21] Lv M., Du M. A review: microbiologically influenced corrosion and the effect of cathodic polarization on typical bacteria. Rev. Environ. Sci. Biotechnol., 2018, vol. 17, iss. 3, pp. 431--446. DOI: https://doi.org/10.1007/s11157-018-9473-2

[22] Venzlaff H., Enning D., Srinivasan J., et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corrosion Sci., 2013, vol. 66, pp. 88--96. DOI: https://doi.org/10.1016/j.corsci.2012.09.006

[23] Duncan K.E., Gieg L.M., Parisi V.A., et al. Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities. Environ. Sci. Technol., 2009, vol. 43, iss. 20, pp. 7977--7984. DOI: https://doi.org/10.1021/es9013932

[24] Liu W. Rapid MIC attack on 2205 duplex stainless steel pipe in a yacht. Eng. Fail. Anal., 2014, vol. 42, pp. 109--120. DOI: https://doi.org/10.1016/j.engfailanal.2014.04.001

[25] Wan H., Song D., Zhang D., et al. Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment. Bioelectrochemistry, 2018, vol. 121, pp. 18--26. DOI: https://doi.org/10.1016/j.bioelechem.2017.12.011

[26] Obuekwe C.O., Westlake D.W.S., Plambeck J.A., et al. Corrosion of mild steel in cultures of ferric iron reducing bacterium isolated from crude oil I. Polarization characteristics. Corrosion, 1981, vol. 37, iss. 8, pp. 461--467. DOI: https://doi.org/10.5006/1.3585992

[27] Dickinson W.H., Lewandowski Z. Manganese biofouling and corrosion behaviour of stainless steel. Biofouling, 1996, vol. 10, iss. 1-3, pp. 79--93. DOI: https://doi.org/10.1080/08927019609386272

[28] Cragnolino G., Tuovinen O.H. The role of sulfate-reducing and sulfur-oxidising bacteria in the localized corrosion of iron-based alloys: a review. Internat. Biodet., 1984, vol. 20, pp. 9--18.

[29] O’Toole G., Kaplan H.B., Kolter R. Biofilm formation as microbial development. Annu. Rev. Microbiol., 2000, vol. 54, pp. 49--79. DOI: https://doi.org/10.1146/annurev.micro.54.1.49

[30] Dowling N.J.E., Mittelman M.W., White D.C. The role of consortia in micobially influenced corrosion. In: Mixed Cultures in Biotechnology. McGraw Hill, 1991, pp. 341--372.

[31] San N.O., Nazir H., Donmez G. Microbially influenced corrosion and inhibition of nickel--zinc and nickel--copper coatings by Pseudomonas aeruginosa. Corros. Sci., 2014, vol. 79, pp. 177--183. DOI: https://doi.org/10.1016/j.corsci.2013.11.004

[32] Abdoli L., Huang J., Li H. Electrochemical corrosion behaviors of aluminum-based marine coatings in the presence of Escherichia coli bacterial biofilm. Mater. Chem. Phys., 2016, vol. 173, pp. 62--69. DOI: https://doi.org/10.1016/j.matchemphys.2016.01.038

[33] Frank B.P., Belfort G. Polysaccharides and sticky membrane surfaces: critical ionic effects. J. Memb. Sci., 2003, vol. 212, iss. 1-2, pp. 205--212. DOI: https://doi.org/10.1016/S0376-7388(02)00502-1

[34] Cescutti P., Toffanin R., Pollesello P., et al. Structural determination of the acidic exopolysaccharide produced by a Pseudomonas sp. strain 1.15. Carbohydr. Res., 1999, vol. 315, iss. 1-2, pp. 159--168. DOI: https://doi.org/10.1016/S0008-6215(98)00318-8

[35] Looijesteijn P.J., Trapet L., de Vries E., et al. Physiological function of exopolysaccharides produced by Lactococcus lactis. Int. J. Food Microbiol., 2001, vol. 64, iss. 1-2, pp. 71--80. DOI: https://doi.org/10.1016/S0168-1605(00)00437-2

[36] Danese P.N., Pratt L.A., Kolter R. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J. Bacteriol., 2000, vol. 182, no. 12, pp. 3593--3596. DOI: https://doi.org/10.1128/JB.182.12.3593-3596.2000

[37] Flemming H.-C., Wingender J. The biofilm matrix. Nat. Rev. Microbiol., 2010, vol. 8, no. 9, pp. 623--633. DOI: https://doi.org/10.1038/nrmicro2415

[38] Zhang X., Bishop P. Biodegradability of biofilm extracellular polymeric substances. Chemosphere, 2003, vol. 50, iss. 1, pp. 63--69. DOI: https://doi.org/10.1016/S0045-6535(02)00319-3

[39] Otzen D., Nielsen P.H. We find them here, we find them there: functional bacterial amyloid. Cell. Mol. Life Sci., 2008, vol. 65, iss. 6, pp. 910--927. DOI: https://doi.org/10.1007/s00018-007-7404-4

[40] Watanabe M., Sasaki K., Nakashimada Y., et al. Growth and flocculation of a marine photosynthetic bacterium Rhodovulum sp. Appl. Microbiol. Biotechnol., 1998, vol. 50, iss. 6, pp. 682--691. DOI: https://doi.org/10.1007/s002530051351

[41] Sand W., Gehrke T. Extracellular polymeric substances mediate bioleach-ing/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria. Res. Microbiol., 2006, vol. 157, iss. 1, pp. 49--56. DOI: https://doi.org/10.1016/j.resmic.2005.07.012

[42] Potts M. Desiccation tolerance of prokaryotes. Microbiol. Rev., 1994, vol. 58, no. 4, pp. 755--805.

[43] Rupp C.J., Fux C.A., Stoodley P. Viscoelasticity of Staphylococcus aureus biofilms in response to fluid shear allows resistance to detachment and facilitates rolling migration. Appl. Environ. Microbiol., 2005, vol. 71, no. 4, pp. 2175--2178. DOI: https://doi.org/10.1128/AEM.71.4.2175-2178.2005

[44] Korstgens V., Flemming H.-C., Wingender J., et al. Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water Sci. Technol., 2001, vol. 43, iss. 6, pp. 49--57. DOI: https://doi.org/10.2166/wst.2001.0338

[45] Hohne D.N., Younger G.J., Solomon M.J. Flexible multifluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms. Langmuir, 2009, vol. 25, iss. 13, pp. 7743--7751. DOI: https://doi.org/10.1021/la803413x

[46] Rickard A.H., Gilbert P., High N.J., et al. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol., 2003, vol. 11, iss. 2, pp. 94--100. DOI: https://doi.org/10.1016/S0966-842X(02)00034-3

[47] Davey M.E., O’Toole G.A. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev., 2000, vol. 64, no. 4, pp. 847--867. DOI: https://doi.org/10.1128/MMBR.64.4.847-867.2000

[48] Sauer K., Cullen M.C., Rickard A.H., et al. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J. Bacteriol., 2004, vol. 186, no. 21, pp. 7312--7326. DOI: https://doi.org/10.1128/JB.186.21.7312-7326.2004

[49] Little B., Wagner P., Mansfeld F. Microbiologically influenced corrosion of metals and alloys. Int. Mater. Rev., 1991, vol. 36, iss. 1, pp. 253--272. DOI: https://doi.org/10.1179/imr.1991.36.1.253

[50] Beech I.B., Campbell S.A., Walsh F.C. The role of surface chemistry in SRB influ-enced corrosion of steel. Int. J. Mar. Biol. Oceanogr., 1993, vol. 13, pp. 233--240.

[51] Brown S.P., Johnstone R.A. Cooperation in the dark: signalling and collective action in quorum-sensing bacteria. Proc. Biol. Sci., 2001, vol. 268, iss. 1470, pp. 961--965. DOI: https://doi.org/10.1098/rspb.2001.1609

[52] Liu H., Gu T., Asif M., et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria. Corrosion Sci., 2017, vol. 114, pp. 102--111. DOI: https://doi.org/10.1016/j.corsci.2016.10.025

[53] Emerson D., Moyer C. Isolation and characterization of novel iron-oxidizing bacteria that grow at circum neutral pH. Appl. Environ. Microbiol., 1997, vol. 63, pp. 4784--4792.

[54] Wang H., Ju L.K., Castaneda H., et al. Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans. Corrosion Sci., 2014, vol. 89, pp. 250--257. DOI: https://doi.org/10.1016/j.corsci.2014.09.005

[55] Hamilton W.A. Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling, 2003, vol. 19, iss. 1, pp. 65--76. DOI: https://doi.org/10.1080/0892701021000041078

[56] Miyata N., Tani Y., Maruo K., et al. Manganese(IV) oxide production by Acre-monium sp. strain KR21-2 and extracellular Mn(II) oxidase activity. Appl. Environ. Microbiol., 2006, vol. 72, no. 10, pp. 6467--6473. DOI: https://doi.org/10.1128/AEM.00417-06

[57] Rajasekar A., Ganesh Babu T., Karutha Pandian S., et al. Biodegradation and corrosion behavior of manganese oxidizer Bacillus cereus ACE4 in diesel transporting pipeline. Corrosion Sci., 2007, vol. 49, iss. 6, pp. 2694--2710. DOI: https://doi.org/10.1016/j.corsci.2006.12.004

[58] Liu H., Fu C., Gu T., et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. Corrosion Sci., 2015, vol. 100, pp. 484--495. DOI: https://doi.org/10.1016/j.corsci.2015.08.023

[59] Gu T. New understandings of biocorrosion mechanisms and their classifications. J. Microbial. Biochem. Technol., 2012, vol. 4, iss. 4, pp. 3--6. DOI: https://doi.org/10.4172/1948-5948.1000e107

[60] Jia R., Yang D., Xu D., et al. Anaerobic corrosion of 304 stainless steel caused by the Pseudomonas aeruginosa biofilm. Front. Microbiol., 2017, vol. 8, art. 2335. DOI: https://doi.org/10.3389/fmicb.2017.02335

[61] Xu D., Gu T. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. Int. Biodeterior. Biodegrad., 2014, vol. 91, pp. 74--81. DOI: https://doi.org/10.1016/j.ibiod.2014.03.014

[62] Jia R., Yang D., Xu D., et al. Carbon steel biocorrosion at 80 oC by a thermophilic sulfate reducing archaeon biofilm provides evidence for its utilization of elemental iron as electron donor through extracellular electron transfer. Corrosion Sci., 2018, vol. 145, pp. 47--54. DOI: https://doi.org/10.1016/j.corsci.2018.09.015

[63] Carvalho M.L., Doma J., Sztyler M., et al. The study of marine corrosion of copper alloys in chlorinated condenser cooling circuits: the role of microbiological components. Bioelectrochemistry, 2014, vol. 97, pp. 2--6. DOI: https://doi.org/10.1016/j.bioelechem.2013.12.005

[64] Xu D., Li Y., Song F., et al. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corrosion Sci., 2013, vol. 77, pp. 385--390. DOI: https://doi.org/10.1016/j.corsci.2013.07.044

[65] Jia R., Yang D., Xu J., et al. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. Corrosion Sci., 2017, vol. 127, pp. 1--9. DOI: https://doi.org/10.1016/j.corsci.2017.08.007

[66] Schroder U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys., 2007, vol. 9, iss. 21, pp. 2619--2629. DOI: https://doi.org/10.1039/B703627M

[67] Li H., Xu D., Li Y., et al. Extracellular electron transfer is a bottleneck in the microbiologically influenced corrosion of C1018 carbon steel by the biofilm of sulfate-reducing bacterium Desulfovibrio vulgaris. PLoS One, 2015, vol. 10, no. 8, art. 0136183. DOI: https://doi.org/10.1371/journal.pone.0136183

[68] Jia R., Yang D., Xu D., et al. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm. Bioelectrochemistry, 2017, vol. 118, pp. 38--46. DOI: https://doi.org/10.1016/j.bioelechem.2017.06.013

[69] Jia R., Tan J.L., Jin P., et al. Effects of biogenic H2S on the microbiologically influ-enced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm. Corrosion Sci., 2018, vol. 130, pp. 1--11. DOI: https://doi.org/10.1016/j.corsci.2017.10.023

[70] Dai X., Wang H., Ju L.K., et al. Corrosion of aluminum alloy 2024 caused by Aspergillus niger. Int. Biodeterior. Biodegradation., 2016, vol. 115, pp. 1--10. DOI: https://doi.org/10.1016/j.ibiod.2016.07.009

[71] Gu T., Rastegar S.O., Mousavi S.M., et al. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresour. Technol., 2018, vol. 261, pp. 428--440. DOI: https://doi.org/10.1016/j.biortech.2018.04.033

[72] Sowards J.W., Mansfield E. Corrosion of copper and steel alloys in a simulated underground storage-tank sump environment containing acid-producing bacteria. Corrosion Sci., 2014, vol. 87, pp. 460--471. DOI: https://doi.org/10.1016/j.corsci.2014.07.009

[73] Dierksen D., Kuhner P., Kappler A., et al. Microbial corrosion of silicon nitride ceramics by sulphuric acid producing bacteria Acidithiobacillus ferrooxidans. J. Eur. Ceram. Soc., 2011, vol. 31, iss. 6, pp. 1177--1185. DOI: https://doi.org/10.1016/j.jeurceramsoc.2010.12.001

[74] Fu W., Li Y., Xu D., et al. Comparing two different types of anaerobic copper biocorrosion by sulfate- and nitrate-reducing bacteria. Mater. Perform., 2014, vol. 53, no. 6, pp. 66--70.

[75] Qu Q., Li S., Li L., et al. Adsorption and corrosion behaviour of Trichoderma harzianum for AZ31B magnesium alloy in artificial seawater. Corrosion Sci., 2017, vol. 118, pp. 12--23. DOI: https://doi.org/10.1016/j.corsci.2017.01.005

[76] Lomakina G.Yu., Modestova Yu.A., Ugarova N.N. Bioluminescence assay for cell viability. Biochemistry (Moscow), 2015, vol. 80, iss. 6, pp. 701--713. DOI: https://doi.org/10.1134/S0006297915060061

[77] Videla H.A., Mele M.F.L., Swords C., et al. Comparative study of the corrosion product films formed in biotic and abiotic sulfide media. NACE --- Int. Corrosion Conf. Ser., 1999, art. 163.

[78] Gu T., Zhao K., Nessic S. A new mechanistic model for MIC based on a biocatalytic cathodic sulfate reduction theory. NACE --- Int. Corrosion Conf. Ser., 2009, art. 09390.

[79] Marciales A., Peralta Y., Haile T., et al. Mechanistic microbiologically influenced corrosion modeling --- a review. Corrosion Sci., 2019, vol. 146, pp. 99--111. DOI: https://doi.org/10.1016/j.corsci.2018.10.004