|

On the Effect of the Flexibility Parameter on Thermodynamic Properties of Acrylonitrile and Methylvinylpyridine Copolymers

Authors: Romanko O.I., Eliseeva E.A. Published: 10.02.2020
Published in issue: #1(88)/2020  
DOI: 10.18698/1812-3368-2020-1-71-79

 
Category: Chemistry | Chapter: Bioorganic Chemistry  
Keywords: chemisorption, polymers, vitrification temperature, thermal analysis, activation energy, polymer flexibility, acrylonitrile, methylvinylpyridine

We used thermal analysis to investigate the effects of temperature (20--300 °C) on the behaviour of acrylonitrile and methylvinylpyridine copolymers and determine the temperature ranges in which segmental mobility develops in them, as well as their glass transition temperatures. Data obtained via differential thermal analysis allowed us to compute activation energies for vitrification processes in copolymers of the series specified and to plot vitrification temperature as a function of copolymer composition. We used the method of increments to compute flexibility parameters for acrylonitrile and 2-methyl-5-vinylpyridine and analyse the effects of flexibility parameters on the manifestation of relaxation processes. The data obtained may be used to amend manufacturing parameters when developing chemisorptive filter materials based on the specified copolymer series

References

[1] Zverev M.P., Abdulkhakova Z.Z. Voloknistye khemosorbenty [Fibrous chemo-sorbents]. Moscow, Narodnyy uchitel’ Publ., 2001.

[2] Garanina O.A., Bardash N.A., Romankevich O.V. Reaktsionnaya modifikatsiya voloknistykh materialov [Reaction modification of fibrous materials]. Kiev, KNUDT Publ., 2013.

[3] Abdulkhakova Z.Z., Zverev O.M. Determination of sorption properties of ion-exchange fibers. Vestnik MGPU. Seriya Estestvennye nauki [Vestnik Moscow City Teachers Training University. Natural Sciences], 2013, no. 1 (11), pp. 31--39 (in Russ.).

[4] Kardash M.M., Fedorchenko N.B., Fedorchenko A.A. Waste water purification problems and methods to solve them. Khimicheskie volokna, 2003, no. 1, pp. 66--69 (in Russ.).

[5] Zverev O.M., Abdulkhakova Z.Z. VION system for waste water purification. Ekologiya i promyshlennost’ Rossii, 2008, no. 6, pp. 12--13 (in Russ.).

[6] Zverev M.P. Fibrous chemosorbents --- materials for environment protection. Khimicheskie volokna, 2002, no. 6, pp. 67--75 (in Russ.).

[7] Romanko O.I., Zakharova N.N., Andreeva I.N., et al. Effect of acrylonitrile and metal-sulfonate ratio on the glass transition temperature of the copolymer. Khimicheskie volokna, 1982, no. 3, pp. 17--19 (in Russ.).

[8] Askadskiy A.A., Matveev Yu.I. Khimicheskoe stroenie i fizicheskie svoystva polimerov [Chemical structure and physical properties of polymers]. Moscow, Khimiya Publ., 1983.

[9] Pritykin L.M., Askadskiy A.A., Gal’perin E.G., et al. On the possibility of estimating macromolecules thermodynamic flexibility by cohesion energy of their segments. Vysokomolekulyarnye soedineniya, 1985, vol. A (27), no. 1, pp.24--29 (in Russ.).

[10] Otto K. Ein Beitrag zur Kinetik der Glasumwandlung von PETF. Faserforshung und Textiltechnik, 1974, vol. 25, no. 8, рp. 347--352.

[11] Romanko O.I. Computation of main kinetic parameters of polymer relaxation. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2004, no. 2, pp. 121--126 (in Russ.).

[12] Kozlov P.V., Papkov S.P. Fiziko-khimicheskie osnovy plastifikatsii polimerov [Physical and chemical basis of polymers plasticization]. Moscow, Khimiya Publ., 1982.