|

Develop a Model to Study the Energy Distribution of Cascades of Atomic Collisions

Авторы: Aleksandrov A.A., Akatev V.A., Metelkin E.V., Baryscheva E.Yu. Опубликовано: 19.02.2019
Опубликовано в выпуске: #1(82)/2019  
DOI: 10.18698/1812-3368-2019-1-27-36

 
Раздел: Физика | Рубрика: Теоретическая физика  
Ключевые слова: kinetic equation, collisions, cascade of atoms, slowing-down of atoms, interaction potential

In this paper, based on the solution of the Boltzmann kinetic equation, we determine the energy distribution function describing the steady-state deceleration of the cascade of moving atoms taking into account their multiplication at the power interaction potential U∼1/rn. A new approach to the solution of the kinetic equation based on the extended concept of primary knocked-on atoms (PKA) is used for its calculation. One of the advantages of using the power interaction potential is that in this case it is possible to obtain simple analytical formulas for the distribution function of the cascade of slowing-down atoms taking into account their multiplication and demonstrate the simplicity and convenience of the proposed new approach to the solution of the kinetic equation. On the other hand, based on the obtained results it is possible to estimate the accuracy of various approximate solutions. It is shown that this approach will be applicable to other interatomic interaction potentials, if the average PKA energy loss in individual collisions decreases monotonically with decreasing energy, and the relative PKA energy loss in individual collisions will be small

Литература

[1] Lehmann Chr. Interaction of radiation with solids and elementary defect production. Kernforschungsanlage Juelich, 1977.

[2] Was Gary S. Fundamentals of radiation materials science. Metals and alloys. Springer, 2010.

[3] Ryazanov A.I., Metelkin E.V. Concerning the theory of radiation cascades of atomic collisions in a solid with an arbitrary interatomic interaction potential. Radiat. Eff., 1980, vol. 52, iss. 1-2, pp. 15–23. DOI: 10.1080/00337578008210012

[4] Satoh Y., Kojima S., Yoshiie T., et al. Criterion of subcascade formation in metals from atomic collision calculation. J. Nucl. Mater., 1991, vol. 179−181, part 2, pp. 901–904. DOI: 10.1016/0022-3115(91)90234-X

[5] Satoh Y., Yoshiie T., Kiritani M. Binary collision calculation of subcascade structure and its correspondence to observe subcascade defects in 14 MeV neutron irradiated copper. J. Nucl. Mater., 1992, vol. 191--194, part B, pp. 1101–1105. DOI: 10.1016/0022-3115(92)90645-2

[6] Metelkin E.V., Ryazanov A.I. Threshold energy of formation of subcascades. At. Energy, 1997, vol. 83, iss. 3, pp. 653–657. DOI: 10.1007/BF02415246

[7] Metelkin E.V., Ryazanov A.I., Semenov E.V. Developing new theoretical models of the formation of atomic collision cascades and subcascades in irradiated solids. J. Exp. Theor. Phys., 2008, vol. 107, no. 3, pp. 394–404. DOI: 10.1134/S1063776108090070

[8] Metelkin E.V., Ryazanov A.I., Semenov E.V. Ispolzovanie kineticheskogo uravneniya Boltsmana dlya opisaniya ansamblya dvizhushchikhsya atomov, vybitykh iz uzlov kristallicheskoy reshetki, dlya issledovaniya obrazovaniya kaskadov i subkaskadov atomnykh stolknoveniy v obluchaemykh tverdykh telakh [Using Boltzmann kinetic equation for description of moving atoms assembly, knocked-out from lattice sites for study on formation of atomic collision cascades and subcascades in radiated solid bodies]. Preprint Kurchstov Institute. Moscow, NRC Kurchatov Institute Publ., 2008 (in Russ.).

[9] Ryazanov A.I., Metelkin E.V., Semenov E.V. Modeling of cascade and subcascade formation at high PKA energies in irradiated fusion structural materials. J. Nucl. Mater., 2009, vol. 386-388, pp. 132--134. DOI: 10.1016/j.jnucmat.2008.12.071

[10] Lindhard J., Vibeke Nielsen, Scharff M. Approximation method in classical scattering by screened Coulomb fields. Kopenhagen, Munksgaard, 1968.

[11] Akatyev V.A., Metelkin E.V., Savinov A.M. Space-time characteristics of relativistic electrons moderated in matter. At. Energy, 2017, vol. 122, iss. 5, pp. 364–368. DOI: 10.1007/s10512-017-0280-6

[12] Isakov A.I., Kazarnovskiy M.V., Medvedev Yu.A., et al. Nestatsionarnoe zamedlenie neytronov. Osnovnye zakonomernosti i nekotorye prilozheniya [Non-stationary moderation of neutrons. Main laws and some applications]. Moscow, Nauka Publ., 1984.