|

Исследование образования полиароматических углеводородов и углеродных наночастиц при пиролизе этилена с добавками тетрагидрофурана за ударными волнами

Авторы: Дракон А.В., Еремин А.В., Коршунова М.Р., Михеева Е.Ю. Опубликовано: 24.08.2023
Опубликовано в выпуске: #4(109)/2023  
DOI: 10.18698/1812-3368-2023-4-79-107

 
Раздел: Физика | Рубрика: Теплофизика и теоретическая теплотехника  
Ключевые слова: ударная труба, пиролиз, кислородсодержащие топлива, этилен, тетрагидрофуран, лазерно-индуцированная флюоресценция, лазерная экстинкция, полиароматические углеводороды, сажа

Аннотация

В настоящее время активно ведутся поиски веществ, которые могли бы служить альтернативным видом топлива или топливной добавкой, снижающей образование и выбросы углеродных наночастиц. Здесь методами лазерно-индуцированной флюоресценции и лазерной экстинкции исследованы процессы образования полиароматических углеводородов (как предшественников образования конденсированной фазы углерода) и углеродных наночастиц сажи при пиролизе этилена с добавкой тетрагидрофурана. Методом лазерно-индуцированной флюоресценции получены спектральные зависимости лазерно-индуцированной флюоресценции полиароматических углеводородов при различных значениях температуры и стадиях пиролиза, а методом лазерной экстинкции --- оптическая плотность реагирующих газовых смесей на длинах волн 405 и 633 нм. Измерения проводились на ударной трубе за отраженными ударными волнами в диапазоне значений температуры 1695...2500 K и давления 2,7...4,1 атм. Показано, что при пиролизе этилена с добавкой тетрагидрофурана процесс сажеобразования интенсифицируется, а температурный диапазон формирования углеродных наночастиц расширяется. Кинетическим моделированием установлено, что ускорение формирования углеродных наночастиц обусловлено образованием метильного радикала и пропилена при пиролизе тетрагидрофурана

Работа выполнена при финансовой поддержке Минобрнауки России (соглашение № 075-15-2020-806 от 29 сентября 2020)

Просьба ссылаться на эту статью следующим образом:

Дракон А.В., Еремин А.В., Коршунова М.Р. и др. Исследование образования полиароматических углеводородов и углеродных наночастиц при пиролизе
этилена с добавками тетрагидрофурана за ударными волнами. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2023, № 4 (109), с. 79--107. DOI: https://doi.org/10.18698/1812-3368-2023-4-79-107
 

Литература

[1] Lange J.-P., van der Heide E., van Buijtenen J., et al. Furfural --- a promising platform for lignocellulosic biofuels. Chem. Sus. Chem., 2012, vol. 5, iss. 1, pp. 150--166. DOI: https://doi.org/10.1002/cssc.201100648

[2] Luterbache J., Martin Alonso D., Dumesic J. Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem., 2014, vol. 16, iss. 12, pp. 4816--4838. DOI: https://doi.org/10.1039/C4GC01160K

[3] Yan K., Wu G., Lafleur T., et al. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew. Sustain. Energy Rev., 2014, vol. 38, pp. 663--676. DOI: https://doi.org/10.1016/j.rser.2014.07.003

[4] Wang Y., Cui Q., Guan Y., et al. Facile synthesis of furfuryl ethyl ether in high yield via the reductive etherification of furfural in ethanol over Pd/C under mild conditions. Green Chem., 2018, vol. 20, iss. 9, pp. 2110--2117. DOI: https://doi.org/10.1039/C7GC03887A

[5] Ahmad F.B., Kalam M., Zhang Z., et al. Sustainable production of furan-based oxygenated fuel additives from pentose-rich biomass residues. Energy Convers. Manag.: X, 2022, vol. 14, art. 100222. DOI: https://doi.org/10.1016/j.ecmx.2022.100222

[6] Liu Z., Wang J., Nielsen J. Yeast synthetic biology advances biofuel production. Curr. Opin. Microbiol., 2022, vol. 65, pp. 33--39. DOI: https://doi.org/10.1016/j.mib.2021.10.010

[7] Binkova B., Sram R. The genotoxic effect of carcinogenic PAHs, their artificial and environmental mixtures (EOM) on human diploid lung fibroblasts. Mutat. Res.-Fund. Mol. M., 2004, vol. 547, iss. 1-2, pp. 109--121. DOI: https://doi.org/10.1016/j.mrfmmm.2003.12.006

[8] Friedman C., Zhang Y., Selin N. Climate change and emissions impacts on atmospheric PAH transport to the Arctic. Environ. Sci. Technol., 2014, vol. 48, iss. 1, pp. 429--437. DOI: https://doi.org/10.1021/es403098w

[9] Myung C., Park S. Exhaust nanoparticle emissions from internal combustion engines: a review. Int. J. Automot. Technol., 2012, vol. 13, no. 1, pp. 9--22. DOI: https://doi.org/10.1007/s12239-012-0002-y

[10] Марков В.А., Чайнов Н.Д., Лобода С.С. Физико-химические свойства смесевых дизельных биотоплив с добавками растительных масел и их воспламеняемость. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2018, № 4 (79), с. 115--128. DOI: https://doi.org/10.18698/1812-3368-2018-4-115-128

[11] Richter H., Howard J. Formation of polycyclic aromatic hydrocarbons and their growth to soot --- a review of chemical reaction pathways. Prog. Energy Combust. Sci., 2000, vol. 26, iss. 4-6, pp. 565--608. DOI: https://doi.org/10.1016/S0360-1285(00)00009-5

[12] Mueller M., Blanquart G., Pitsch H. Hybrid Method of Moments for modeling soot formation and growth. Combust. Flame, 2009, vol. 156, iss. 6, pp. 1143--1155. DOI: https://doi.org/10.1016/j.combustflame.2009.01.025

[13] Yapp E.K.Y., Chen D., Akroyd J., et al. Numerical simulation and parametric sensitivity study of particle size distributions in a burner-stabilised stagnation flame. Combust. Flame, 2015, vol. 162, iss. 6, pp. 2569--2581. DOI: https://doi.org/10.1016/j.combustflame.2015.03.006

[14] Veshkini A., Eaves N.A., Dworkin S.B., et al. Application of PAH-condensation reversibility in modeling soot growth in laminar premixed and nonpremixed flames. Combust. Flame, 2016, vol. 167, pp. 335--352. DOI: https://doi.org/10.1016/j.combustflame.2016.02.024

[15] McEnally C., Pfefferle L., Atakan B., et al. Studies of aromatic hydrocarbon formation mechanisms in flames: progress towards closing the fuel gap. Prog. Energy Combust. Sci., 2006, vol. 32, iss. 3, pp. 247--294. DOI: https://doi.org/10.1016/j.pecs.2005.11.003

[16] Glassman I. Soot formation in combustion processes. Symp. (Int.) Combust., 1989, vol. 22, iss. 1, pp. 295--311. DOI: https://doi.org/10.1016/S0082-0784(89)80036-0

[17] Frenklach M., Mebel A. On the mechanism of soot nucleation. Phys. Chem. Chem. Phys., 2020, vol. 22, iss. 9, pp. 5314--5331. DOI: https://doi.org/10.1039/D0CP00116C

[18] Frenklach M., Wang H. Detailed modeling of soot particle nucleation and growth. Symp. (Int.) Combust., 1991, vol. 23, iss. 1, pp. 1559--1566. DOI: https://doi.org/10.1016/S0082-0784(06)80426-1

[19] Frenklach M. Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys., 2002, vol. 4, iss. 11, pp. 2028--2037. DOI: https://doi.org/10.1039/B110045A

[20] Miller J., Klippenstein S. The recombination of propargyl radicals and other reactions on a C6H6 potential. J. Phys. Chem. A, 2003, vol. 107, iss. 39, pp. 7783--7799. DOI: https://doi.org/10.1021/jp030375h

[21] Kamphus M., Braun-Unkhoff M., Kohse-Hoinghaus K. Formation of small PAHs in laminar premixed low-pressure propene and cyclopentene flames: experiment and modeling. Combust. Flame, 2008, vol. 152, iss. 1--2, pp. 28--59. DOI: https://doi.org/10.1016/j.combustflame.2007.09.005

[22] Narayanaswamy K., Blanquart G., Pitsch H. A consistent chemical mechanism for oxidation of substituted aromatic species. Combust. Flame, 2010, vol. 157, iss. 10, pp. 1879--1898. DOI: https://doi.org/10.1016/j.combustflame.2010.07.009

[23] Kholghy M., Kelesidis G., Pratsinis S. Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation. Phys. Chem. Chem. Phys., 2018, vol. 20, iss. 16, pp. 10926--10938. DOI: https://doi.org/10.1039/C7CP07803J

[24] Gonzalez M., Piel W., Asmus T., et al. Oxygenates screening for advanced petroleum-based diesel fuels: part 2. The effect of oxygenate blending compounds on exhaust emissions. SAE Tech. Pap., 2001, vol. 110, art. 2001-01-3632. DOI: https://doi.org/10.4271/2001-01-3632

[25] Musculus M., Dec J., Tree D. Effects of fuel parameters and diffusion flame lift-off on soot formation in a heavy-duty DI diesel engine. SAE Tech. Pap., 2002, art. 2002-01-0889. DOI: https://doi.org/10.4271/2002-01-0889

[26] Fayyazbakhsh A., Pirouzfar V. Comprehensive overview on diesel additives to reduce emissions, enhance fuel properties and improve engine performance. Renew. Sustain. Energy Rev., 2017, vol. 74, pp. 891--901. DOI: https://doi.org/10.1016/j.rser.2017.03.046

[27] Yusri I., Mamat R., Najafi G., et al. Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: a review on engine performance and exhaust emissions. Renew. Sustain. Energy Rev., 2017, vol. 77, pp. 169--181. DOI: https://doi.org/10.1016/j.rser.2017.03.080

[28] Awad O., Mamat R., Ibrahim T., et al. Overview of the oxygenated fuels in spark ignition engine: environmental and performance. Renew. Sustain. Energy Rev., 2018, vol. 91, pp. 394--408. DOI: https://doi.org/10.1016/j.rser.2018.03.107

[29] Das D., John P., McEnally C., et al. Measuring and predicting sooting tendencies of oxygenates, alkanes, alkenes, cycloalkanes, and aromatics on a unified scale. Combust. Flame, 2018, vol. 190, pp. 349--364. DOI: https://doi.org/10.1016/j.combustflame.2017.12.005

[30] Liu H., Wang Z., Li Y., et al. Recent progress in the application in compression ignition engines and the synthesis technologies of polyoxymethylene dimethyl ethers. Appl. Energy, 2019, vol. 233-234, pp. 599--611. DOI: https://doi.org/10.1016/j.apenergy.2018.10.064

[31] Yesilyurt M., Aydin M. Experimental investigation on the performance, combustion and exhaust emission characteristics of a compression-ignition engine fueled with cottonseed oil biodiesel/diethyl ether/diesel fuel blends. Energy Convers. Manag., 2020, vol. 205, art. 112355. DOI: https://doi.org/10.1016/j.enconman.2019.112355

[32] Lemaire R., Le Corre G., Nakouri M. Predicting the propensity to soot of hydrocarbons and oxygenated molecules by means of structural group contribution factors derived from the processing of unified sooting indexes. Fuel, 2021, vol. 302, art. 121104. DOI: https://doi.org/10.1016/j.fuel.2021.121104

[33] Иванкин А.Н., Болдырев В.С., Жилин Ю.Н. и др. Макрокинетическая трансформация природных липидов для получения моторного топлива. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2017, № 5 (74), с. 95--108. DOI: http://dx.doi.org/10.18698/1812-3368-2017-5-95-108

[34] Марков В.А., Чайнов Н.Д., Неверова В.В. Оптимизация состава смесевых биотоплив с добавками растительных масел. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2019, № 2 (74), с. 114--131. DOI: http://dx.doi.org/10.18698/1812-3368-2019-2-114-131

[35] Sudholt A., Cai L., Heyne J., et al. Ignition characteristics of a bio-derived class of saturated and unsaturated furans for engine applications. Proc. Combust. Inst., 2015, vol. 35, iss. 3, pp. 2957--2965. DOI: https://doi.org/10.1016/j.proci.2014.06.147

[36] Eldeeb M., Akih-Kumgeh B. Recent trends in the production, combustion and modeling of furan-based fuels. Energies, 2018, vol. 11, iss. 3, art. 512. DOI: https://doi.org/10.3390/en11030512

[37] Марков В.А., Нагорнов С.А., Девянин С.Н. Состав и теплота сгорания биотоплив, получаемых из растительных масел. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2012, № 2 (45), с. 65--80.

[38] Huang J., Xiao H., Yang X., et al. Combustion characteristics and emission analysis of tetrahydrofuran--biodiesel-blended fuel in a diesel engine. Energy Fuels, 2021, vol. 35, iss. 4, pp. 3164--3173. DOI: https://doi.org/10.1021/acs.energyfuels.0c03885

[39] Wu Y., Zhang X., Zhang Z., et al. Effects of diesel-ethanol-THF blend fuel on the performance and exhaust emissions on a heavy-duty diesel engine. Fuel, 2020, vol. 271, art. 117633. DOI: https://doi.org/10.1016/j.fuel.2020.117633

[40] Lifshitz A., Bidani M., Bidani S. Thermal reactions of cyclic ethers at high temperatures. Part 3. Pyrolysis of tetrahydrofuran behind reflected shocks. J. Phys. Chem., 1986, vol. 90, iss. 15, pp. 3422--3429. DOI: https://doi.org/10.1021/j100406a024

[41] Dagaut P., Mcguinness M., Simmie J., et al. The ignition and oxidation of tetrahydrofuran: experiments and kinetic modeling. Combust. Sci. Technol., 1998, vol. 135, iss. 1-6, pp. 3--29. DOI: https://doi.org/10.1080/00102209808924147

[42] Aydogan B. Experimental investigation of tetrahydrofuran combustion in homogeneous charge compression ignition (HCCI) engine: effects of excess air coefficient, engine speed and inlet air temperature. J. Energy Inst., 2020, vol. 93, iss. 3, pp. 1163--1176. DOI: https://doi.org/10.1016/j.joei.2019.10.009

[43] Wu Y., Zhang X., Zhang Z., et al. Effects of diesel-ethanol-THF blend fuel on the performance and exhaust emissions on a heavy-duty diesel engine. Fuel, 2020, vol. 271, no. 117633. DOI: https://doi.org/10.1016/j.fuel.2020.117633

[44] Liang J., Zhang Q., Chen Z., et al. The combustion and emission characteristics of diesel-ethanol blends with THF as cosolvents in a diesel engine operating with EGR. Fuel, 2021, vol. 298, art. 120843. DOI: https://doi.org/10.1016/j.fuel.2021.120843

[45] De Iuliis S., Idir M., Chaumeix N., et al. Scattering/extinction measurements of soot formation in a shock tube. Exp. Therm. Fluid Sci., 2008, vol. 32, iss. 7, pp. 1354--1362. DOI: https://doi.org/10.1016/j.expthermflusci.2007.11.008

[46] Agafonov G., Bilera I., Vlasov P., et al. Unified kinetic model of soot formation in the pyrolysis and oxidation of aliphatic and aromatic hydrocarbons in shock waves. Kin. Katal., 2016, vol. 57, no. 5, pp. 557--572. DOI: https://doi.org/10.1134/S0023158416050013

[47] Utsav K., Beshir M., Farooq A. Simultaneous measurements of acetylene and soot during the pyrolysis of ethylene and benzene in a shock tube. Proc. Combust. Inst., 2017, vol. 36, iss. 1, pp. 833--840. DOI: https://doi.org/10.1016/j.proci.2016.08.087

[48] Frenklach M., Clary D., Gardiner Jr. W.C., et al. Effect of fuel structure on pathways to soot. Symp. (Int.) Combust., 1988, vol. 21, iss. 1, pp. 1067--1076. DOI: https://doi.org/10.1016/S0082-0784(88)80337-0

[49] Bauerle St., Karasevich Y., Slavov St., et al. Soot formation at elevated pressures and carbon concentrations in hydrocarbon pyrolysis. Symp. (Int.) Combust., 1994, vol. 25, iss. 1, pp. 627--634. DOI: https://doi.org/10.1016/S0082-0784(06)80694-6

[50] Bejaoui S., Mercier X., Desgroux P., et al. Laser induced fluorescence spectroscopy of aromatic species produced in atmospheric sooting flames using UV and visible excitation wavelengths. Combust. Flame, 2014, vol. 161, iss. 10, pp. 2479--2491. DOI: https://doi.org/10.1016/j.combustflame.2014.03.014

[51] Wu J., Song K., Litzinger T., et al. Reduction of PAH and soot in premixed ethylene--air flames by addition of ethanol. Combust. Flame, 2006, vol. 144, iss. 4, pp. 675--687. DOI: https://doi.org/10.1016/j.combustflame.2005.08.036

[52] Mouis A., Menon A., Katta V., et al. Effects of m-xylene on aromatics and soot in laminar, N2-diluted ethylene co-flow diffusion flames from 1 to 5 atm. Combust. Flame, 2012, vol. 159, iss. 10, pp. 3168--3178. DOI: https://doi.org/10.1016/j.combustflame.2012.03.014

[53] Beiling C., Xinlei L., Haifeng L., et al. Soot reduction effects of the addition of four butanol isomers on partially premixed flames of diesel surrogates. Combust. Flame, 2017, vol. 177, pp. 123--136. DOI: https://doi.org/10.1016/j.combustflame.2016.12.012

[54] Liu H., Zhang P., Liu X., et al. Laser diagnostics and chemical kinetic analysis of PAHs and soot in co-flow partially premixed flames using diesel surrogate and oxygenated additives of n-butanol and DMF. Combust. Flame, 2018, vol. 188, pp. 129--141. DOI: https://doi.org/10.1016/j.combustflame.2017.09.025

[55] Федотов Ю.В., Белов М.Л., Кравцов Д.А. и др. Экспериментальные исследования динамики спектров лазерно-индуцированной флуоресценции нефтяных загрязнений. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2019, № 1 (82), с. 66--76. DOI: https://doi.org/10.18698/1812-3368-2019-1-66-76

[56] Linstrom P., Mallard W. The NIST chemistry WebBook: a chemical data resource on the internet. J. Chem. Eng. Data, 2001, vol. 46, iss. 5, pp. 1059--1063. DOI: https://doi.org/10.1021/je000236i

[57] UV/Vis+ photochemistry database. science-softcon.de: веб-сайт. URL: https://www.science-softcon.de/spectra/pah/pah_1.php#129-00-0 (дата обращения: 15.06.2023).

[58] Eremin A. Formation of carbon nanoparticles from the gas phase in shock wave pyrolysis processes. Prog. Energy Combust. Sci., 2012, vol. 38, iss. 1, pp. 1--40. DOI: https://doi.org/10.1016/j.pecs.2011.09.002

[59] Cuoci A., Frassoldati A., Faravilli T., et al. OpenSMOKE++: an object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms. Comput. Phys. Commun., 2015, vol. 192, pp. 237--264. DOI: https://doi.org/10.1016/j.cpc.2015.02.014

[60] Pejpichestakul W., Ranzi E., Pelucchi M., et al. Examination of a soot model in premixed laminar flames at fuel-rich conditions. Proc. Combust. Inst., 2019, vol. 37, iss. 1, pp. 1013--1021. DOI: https://doi.org/10.1016/j.proci.2018.06.104

[61] Ranzi E., Frassoldati A., Stagni A., et al. Reduced kinetic schemes of complex reaction systems: Fossil and biomass-derived transportation fuels. Int. J. Chem. Kinet., 2014, vol. 46, iss. 9, pp. 512--542. DOI: https://doi.org/10.1002/kin.20867

[62] Ranzi E., Cavallotti C., Cuicci A., et al. New reaction classes in the kinetic modeling of low temperature oxidation of n-alkanes. Combust. Flame, 2015, vol. 162, iss. 5, pp. 1679--1691. DOI: https://doi.org/10.1016/j.combustflame.2014.11.030

[63] Wu Y., Xu N., Yang M., et al. Ignition delay time measurement and kinetic modeling of furan, and comparative studies of 2,3-dihydrofuran and tetrahydrofuran at low to intermediate temperatures by using a rapid compression machine. Combust. Flame, 2020, vol. 213, pp. 226--236. DOI: https://doi.org/10.1016/j.combustflame.2019.12.010

[64] Savitzsky A., Golay M. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem., 1964, vol. 36, iss. 8, pp. 1627--1639. DOI: https://doi.org/10.1021/ac60214a047

[65] Wagner H.G. Soot formation in combustion. Symp. (Int.) Combust., 1979, vol. 17, iss. 1, pp. 3--19. DOI: https://doi.org/10.1016/S0082-0784(79)80005-3

[66] Frenklach M., Taki S., Durgaprasad M., et al. Soot formation in shock-tube pyrolysis of acetylene, allene, and 1,3-butadiene. Combust. Flame, 1983, vol. 54, iss. 1-3, pp. 81--101. DOI: https://doi.org/10.1016/0010-2180(83)90024-X

[67] Emelianov A., Eremin A., Gurentsov E., et al. Experimental study of soot size decrease with pyrolysis temperature rise. Proc. Combust. Inst., 2015, vol. 35, iss. 2, pp. 1753--1760. DOI: https://doi.org/10.1016/j.proci.2014.08.030

[68] Eremin A., Gurentsov E., Mikheyeva E. Experimental study of temperature influence on carbon particle formation in shock wave pyrolysis of benzene and benzene--ethanol mixtures. Combust. Flame, 2015, vol. 162, no. 1, pp. 207--215. DOI: https://doi.org/10.1016/j.combustflame.2014.09.015

[69] D’Anna A., Rolando A., Allouis C., et al. Nano-organic carbon and soot particle measurements in a laminar ethylene diffusion flame. Proc. Combust. Inst., 2005, vol. 30, iss. 1, pp. 1449--1456. DOI: https://doi.org/10.1016/j.proci.2004.08.276

[70] Michelsen H., Schrader P., Golay F. Wavelength and temperature dependences of the absorption and scattering cross sections of soot. Carbon, 2010, vol. 48, iss. 8, pp. 2175--2191. DOI: https://doi.org/10.1016/j.carbon.2010.02.014

[71] Eremin A., Gurentsov G., Popova E., et al. Size dependence of complex refractive index function of growing nanoparticles. Appl. Phys. B., 2011, vol. 104, no. 2, pp. 285--295. DOI: https://doi.org/10.1007/s00340-011-4420-8

[72] D’Anna A., Kent J. Aromatic formation pathways in non-premixed methane flames. Combust. Flame, 2003, vol. 132, iss. 4, pp. 715--722. DOI: https://doi.org/10.1016/S0010-2180(02)00522-9

[73] Blanquart G., Pepiot-Desjardins P., Pitsch H. Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combust. Flame, 2009, vol. 156, iss. 3, pp. 588--607. DOI: https://doi.org/10.1016/j.combustflame.2008.12.007

[74] Johansson K., Head-Gordon M., Wilson K., et al. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science, 2018, vol. 361, no. 6406, pp. 997--1000. DOI: https://doi.org/10.1126/science.aat3417