Studying Optical Characteristics of Diffused Light Reflecting from Naturally Senescing Leaves of Deciduous Trees

Авторы: Mamelin Yu.V., Kopytov G.F., Buzko V.Yu. Опубликовано: 18.10.2020
Опубликовано в выпуске: #5(92)/2020  
DOI: 10.18698/1812-3368-2020-5-72-82

Раздел: Физика | Рубрика: Физика конденсированного состояния  
Ключевые слова: spectroscopy, diffused reflection, vegetation indices, leaves of deciduous trees, chlorophylls, carotenoids, NDVI705 index, CRI1 index

Study object included leaves of deciduous trees in the Krasnodar Territory at different stages of senescing visually manifested in their color alteration. Study subject was the optical characteristics of light diffused reflection from green, yellow-green and yellow leaves of deciduous trees in the Krasnodar Territory during the autumn season. Work objective lies in identifying the possibility to establish differences between green leaves of deciduous trees, and yellow-green and yellow leaves of deciduous trees using the terrain multispectral and hyperspectral sounding methods, as well as collecting information on spectral characteristics of the diffused light being reflected from various biological objects. Results of quantitative and qualitative analysis of data obtained through the diffused light reflectance spectroscopy from leaves of deciduous trees are presented. Narrow-band vegetation indices mNDVI705, mSR705, CRI1, SIPI and PSRI were used in quantitative analysis of data on the diffused light reflection spectra obtained from green, yellow-green and yellow leaves of deciduous trees. It was revealed that the use of narrow-band vegetation indices in the remote sensing algorithms using multi- and hyperspectral cameras makes it possible to rather accurately distinguish leaves at different stages of senescing. Optical characteristics of diffused light reflection from green, yellow-green and yellow leaves of deciduous trees, which are typical species of trees in urban and rural plantings in the Krasnodar Territory, are described for the first time


[1] Liu Q., Fu Yo., Zeng Z., et al. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Glob. Chang. Biol., 2016, vol. 22, iss. 2, pp. 644--655. DOI: https://doi.org/10.1111/gcb.13081

[2] Ougham H.J., Morris Ph., Thomas H. The colors of autumn leaves as symptoms of cellular recycling and defenses against environmental stresses. Curr. Top. Dev. Biol., 2005, vol. 66, pp. 135--130. DOI: https://doi.org/10.1016/S0070-2153(05)66004-8

[3] Pollet B., Steppe K., Dambre P., et al. Seasonal variation of photosynthesis and photosynthetic efficiency in Phalaenopsis. Photosynthetica, 2010, vol. 48, iss. 4, pp. 580--588. DOI: https://doi.org/10.1007/s11099-010-0075-7

[4] Broeckx L.S., Fichot R., Verlinden M.S., et al. Seasonal variations in photosynthesis, intrinsic water-use efficiency and stable isotope composition of poplar leaves in a short-rotation plantation. Tree Physiol., 2014, vol. 34, iss. 7, pp. 701--715. DOI: https://doi.org/10.1093/treephys/tpu057

[5] Weng J.-H., Liao T.-S., Sung K.-H., et al. Seasonal variations in photosynthesis of Picea morrisonicola growing in the subalpine region of subtropical Taiwan. Tree Physiol., 2005, vol. 25, iss. 8, pp. 973--979. DOI: https://doi.org/10.1093/treephys/25.8.973

[6] Robledo D., Freile-Pelegrin Y. Seasonal variation in photosynthesis and biochemical composition of Caulerpa spp. (Bryopsidales, Chlorophyta) from the Gulf of Mexico. Phycologia, 2005, vol. 44, no. 3, pp. 312--319.

[7] Lee D.W., O’Keefe J., Holbrook N.M., et al. Pigment dynamics and autumn leaf senescence in a New England deciduous forest, eastern USA. Ecol. Res., 2003, vol. 18, ss. 6, pp. 677--694. DOI: https://doi.org/10.1111/j.1440-1703.2003.00588.x

[8] Liu N., Lin Z.-F., Van Devender A., et al. Spectral reflectance indices and pigment functions during leaf ontogenesis in six subtropical landscape plants. Plant Growth Regul., 2008, vol. 58, no. 1, pp. 73--84. DOI: https://doi.org/10.1007/s10725-008-9353-9

[9] Sims D.A., Gamon J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ., 2002, vol. 81, iss. 2-3, pp. 337--354. DOI: https://doi.org/10.1016/s0034-4257(02)00010-x

[10] Gitelson A.A., Zur Y., Chivkunova O.B., et al. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem. Photobiol., 2002, vol. 75, iss. 3, pp. 272--281. DOI: https://doi.org/10.1562/0031-8655(2002)0750272ACCIPL2.0.CO2

[11] Merzlyak M.N., Gitelson A.A., Chivkunova O.B., et al. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant., 1999, vol. 106, iss. 1, pp. 135--141. DOI: https://doi.org/10.1034/j.1399-3054.1999.106119.x

[12] Merzlyak M.N., Chivkunova O.B., Solovchenko A.E., et al. Light absorption by anthocyanins in juvenile, stressed, and senescing leaves. J. Exp. Bot., 2008, vol. 59, iss. 14, pp. 3903--3911. DOI: https://doi.org/10.1093/jxb/ern230

[13] Zhou X., Huang W., Zhang J., et al. A novel combined spectral index for estimating the ratio of carotenoid to chlorophyll content to monitor crop physiological and phenological status. Int. J. Appl. Earth Obs. Geoinf., 2019, vol. 76, pp. 128--142. DOI: https://doi.org/10.1016/j.jag.2018.10.012

[14] Hovi A., Raitio P., Rautiainen M. A spectral analysis of 25 boreal tree species. Silva Fennica, 2017, vol. 51, no. 4, art. 7753. DOI: https://doi.org/10.14214/sf.7753

[15] Mottus M., Sulev M., Hallik L. Seasonal course of the spectral properties of alder and birch leaves. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 2014, vol. 7, iss. 6, pp. 2496--2505. DOI: https://doi.org/10.1109/jstars.2013.2294242

[16] Forsstrom P., Peltoniemi J., Rautiainen M. Seasonal dynamics of lingonberry and blueberry spectra. Silva Fennica, 2019, vol. 53, no. 2, art. 10150. DOI: https://doi.org/10.14214/sf.10150

[17] Zhang X., Han L., Dong Y., et al. A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV Images. Remote Sens., 2019, vol. 11, iss. 13, art. 1554. DOI: https://doi.org/10.3390/rs11131554

[18] Randive P.U., Deshmukh R.P., Janse P.V., et al. Discrimination between healthy and diseased cotton plant by using hyperspectral reflectance data. In: Santosh K., Hegadi R. (eds). Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol. 1037. Singapore, Springer, pp. 342--351. DOI: https://doi.org/10.1007/978-981-13-9187-3_30

[19] Lee Z., Carder K., Arnone R., et al. Determination of primary spectral bands for remote sensing of aquatic environments. Sensors, 2007, vol. 7, iss. 12, pp. 3428--3441. DOI: https://doi.org/10.3390/s7123428

[20] Molkov A.A., Korchemkina E.N., Kalinskaya D.V., et al. Spatial and temporal variability of reflectance coefficient of Gorky reservoir waters: results of 2016--2017 expeditions. Sovr. Probl. DZZ kosm. [Current Problems in Remote Sensing of the Earth from Space], 2018, vol. 15, no. 2, pp. 201--212 (in Russ.). DOI: https://doi.org/10.21046/2070-7401-2018-15-2-201-210

[21] Menon H.B., Adhikari A. Remote sensing of chlorophyll-a in case II waters: a novel approach with improved accuracy over widely implemented turbid water indices. J. Geophys. Res. Oceans., 2018, vol. 123, iss. 11, pp. 8138--8158. DOI: https://doi.org/10.1029/2018jc014052

[22] Kume A., Akitsu T., Nasahara K.N. Correction to: why is chlorophyll b only used in light-harvesting systems? J. Plant Res., 2018, vol. 131, no. 6, pp. 961--972. DOI: https://doi.org/10.1007/s10265-018-1052-7

[23] Kanash E.V. [Main properties of agrophytocenosis for decoding spectral data of remote sounding]. Mater. Vseros. nauch. konf. "Primenenie sredstv distantsionnogo zondirovaniya Zemli v sel’skom khozyaystve" [Proc. Rus. Int. Conf. "Application of remote Earth sensing in agriculture"]. St. Petersburg, FGBNU AFI Publ., 2015, pp. 25--28 (in Russ.).

[24] Feret J.-B., Asner G.P. Tree species discrimination in tropical forests using airborne imaging spectroscopy. IEEE Trans. Geosci. Remote Sens., 2013, vol. 51, iss. 1, pp. 73--84. DOI: https://doi.org/10.1109/tgrs.2012.2199323

[25] Penuelas J., Filella I., Gamon J.A., et al. Assessing photosynthetic radiation-use efficiency of emergent aquatic vegetation from spectral reflectance. Aquat. Bot., 1997, vol. 58, iss. 3-4, pp. 307--315. DOI: https://doi.org/10.1016/s0304-3770(97)00042-9

[26] Xue J., Su B. Significant remote sensing vegetation indices: a review of developments and applications. J. Sens., 2017, vol. 2017, art. 1353691. DOI: https://doi.org/10.1155/2017/1353691